Влияние температуры и частоты на диэлектрическую проницаемость материалов с различными видами поляризации.

Зависимость диэлектрической проницаемости от температуры

Роль диэлектрической проницаемости среды в физике

Относительная диэлектрическая проницаемость ε среды, наряду с её относительной магнитной проницаемостью μ и удельной электропроводностью σ, влияет на распределение напряжённости электромагнитного поля в пространстве и используется при описании среды в системе уравнений Максвелла.

Среду со значениями μ=1 и σ=0 называют идеальным диэлектриком (диэлектриком без поглощения, диэлектриком без потерь), для неё ε определяет такие вторичные параметры, как коэффициент преломления среды, скорость распространения, фазовую скорость и коэффициент укорочения длины электромагнитной волны в среде, волновое сопротивление среды.

Относительная диэлектрическая проницаемость реальных диэлектриков (диэлектриков с потерями, диэлектриков с поглощением, для которых σ>0) также влияет на значение тангенса угла диэлектрических потерь и коэффициент поглощения электромагнитной волны в среде.

Относительная диэлектрическая проницаемость среды влияет на электрическую ёмкость расположенных в ней проводников: увеличение ε приводит к увеличению ёмкости. При изменении ε в пространстве (то есть, если ε зависит от координат) говорят о неоднородной среде, зависимость ε от частоты электромагнитных колебаний — одна из возможных причин дисперсии электромагнитных волн, зависимость ε от напряженности электрического поля — одна из возможных причин нелинейности среды. Если среда является анизотропной, то в материальном уравнении ε будет не скаляром, а тензором. При использовании метода комплексных амплитуд в решении системы уравнений Максвелла и наличии потерь в среде (σ>0) оперируют комплексной диэлектрической проницаемостью.

Таким образом, ε является одним из важнейших «электромагнитных параметров» соответствующей среды.

Температурный коэффициент – диэлектрическая проницаемость

Температурный коэффициент диэлектрической проницаемости в керамических материалах с ионной структурой в большинстве случаев имеет положительное значение. Это связано с тем, что с повышением температуры понижается плотность вещества и возрастает поляризуемость ионов. Диэлектрическая проницаемость зависит от частоты тока и с ее увеличением заметно снижается. Диэлектрические потери в керамических диэлектриках находятся в зависимости от структуры и фазового состава материала. В большинстве керамических материалов диэлектрические потери определяются поляризацией и сквозной электропроводностью. Если керамический диэлектрик образован кристаллической фазой с плотной и устойчивой упаковкой ионов ( корунд), то диэлектрические потери в нем при отсутствии примесей, искажающих решетку, будут незначительны. Напротив, если в керамическом диэлектрике большое содержание стекловидной фазы, являющейся типичным веществом ионной структуры, то диэлектрические потери в таком материале вследствие большой поляризуемости щелочных ионов и большой электропроводности будут велики. Керамические диэлектрики, кристаллическую фазу которых составляют вещества, обладающие структурой с неплотной упаковкой ионов ( муллит, циркон, кордиерит), характеризуются повышенными диэлектрическими потерями, вызываемыми так называемой релаксационной поляризацией. Диэлектрические потери для подавляющего большинства керамических диэлектриков с повышением температуры возрастают. Величина диэлектрических потерь связана также с частотой.

Температурный коэффициент диэлектрической проницаемости у неполярных пленочных диэлектриков заведомо отрицательный и в основном определяет знак и величину ТКЕ конденсаторов с такими диэлектриками. По величине ТКЕ ( примерно – 100ч – 200 10 – 6 град -) конденсаторы с неполярным пленочным диэлектриком уступают лучшим слюдяным ( 50 10 – 6 град-1) и керамическим термостабильным конденсаторам; однако у обычной конденсаторной керамики ТКЕ выше. По стабильности емкости во времени конденсаторы из неполярных пленок хуже слюдяных или высокочастотных керамических, так как коэффициент расширения органических веществ примерно на порядок выше, чем у таких неорганических веществ, как керамика или слюда. Поэтому неизбежные колебания температуры вызывают при хранении конденсаторов значительно большие колебания размеров и их остаточные изменения, усиливаемые пластичностью полимерных органических материалов.

Будет интересно➡  Правила безопасности при работе с электричеством

Температурный коэффициент диэлектрической проницаемости в керамических материалах с ионной структурой в большинстве случаев имеет положительное значение. Это связано с тем, что с повышением температуры понижается плотность вещества и возрастает поляризуемость ионов. Диэлектрическая проницаемость зависит от частоты тока и с ее увеличением заметно снижается. Диэлектрические потери в керамических диэлектриках находятся в зависимости от структуры и фазового состава материала. В большинстве керамических материалов диэлектрические потери определяются поляризацией и сквозной электропроводностью. Если керамический диэлектрик образован кристаллической фазой с плотной и устойчивой упаковкой ионов ( корунд), то диэлектрические потери в нем при отсутствии примесей, искажающих решетку, будут незначительны. Напротив, если в керамическом диэлектрике большое содержание стекловидной фазы, являющейся типичным веществом ионной структуры, то диэлектрические потери в таком материале вследствие большой поляризуемости щелочных ионов и большой электропроводности будут велики. Керамические диэлектрики, кристаллическую фазу которых составляют вещества, обладающие структурой с неплотной упаковкой ионов ( муллит, циркон, кордиерит), характеризуются повышенными диэлектрическими потерями, вызываемыми так называемой релаксационной поляризацией. Диэлектрические потери для подавляющего большинства керамических диэлектриков с повышением температуры возрастают. Величина диэлектрических потерь связана также с частотой.

Температурный коэффициент диэлектрической проницаемости при разных температурах имеет разные числовые значения и даже разные знаки.

Температурный коэффициент диэлектрической проницаемости ( ТКе) – электрическая характеристика, применяемая для оценки скорости изменения е от температуры радиоматериалов.

Температурный коэффициент диэлектрической проницаемости может иметь положительное или отрицательное значение. Знак ТКе указывает на возрастание или убывание диэлектрической проницаемости. Числовое значение ТКе показывает, с какой скоростью возрастает или убывает величина диэлекрической проницаемости, а следовательно, величина емкости, образуемой диэлектриком или полупроводником.

Температурный коэффициент диэлектрической проницаемости ( д пО / дТ) р для органических растворителей может быть положительным и отрицательным.

Температурный коэффициент диэлектрической проницаемости у электроизоляционных слюд находится на уровне ТКе – ( Ю – 30) 10 – е 1 / град.

Температурный коэффициент диэлектрической проницаемости ( dlnD / dT), для органических растворителей может быть положительным и отрицательным.

Температурный коэффициент диэлектрической проницаемости ТКег – величина, позволяющая оценить характер изменения диэлектрической проницаемости ег, а следовательно, и емкости изоляции с изменением температуры.

Температурный коэффициент диэлектрической проницаемости ТКе-величина, позволяющая оценить характер изменения диэлектрической проницаемости е, а следовательно, и емкости изоляции с изменением температуры.

Будет интересно➡  Чему равна электроемкость конденсатора?

Влияние температуры и частоты на диэлектрическую проницаемость материалов с различными видами поляризации.

Диэлектрическая проницаемость полярных веществ сильно зависит от их температуры и частоты внешнего электрического поля. При низких температурах, когда подвижность молекул и радикалов, входящих в состав молекул, мала, поворот диполей на большие углы невозможен, и в материале наблюдается поляризация электронного упругого смещения и дипольно-упругая поляризация. В связи с этим диэлектрическая проницаемость полярных материалов при низких температурах мала (e=2-2,5). С возрастанием температуры подвижность диполей увеличивается, и облегчается их ориентация под действием внешнего поля. Следовательно, диэлектрическая проницаемость растет. Однако при дальнейшем росте температуры кинетическая энергия теплового движения диполей возрастает настолько, что броуновское движение диполей разрушает ориентацию, задаваемую внешним полем. Поэтому диэлектрическая проницаемость снижается. Таким образом, зависимость e=f(t) для веществ с дипольно-релаксационной поляризацией имеет характерную форму “холма”.

Так как ориентация диполей по направлению поля осуществляется в процессе теплового движения, то наступление состояния поляризации требует времени. С увеличением вязкости возрастает время, необходимое для наступления поляризации. При увеличении частоты электрического поля время действия поля на диполи за половину периода уменьшается, а следовательно, уменьшается величина поляризации и снижается величина диэлектрической проницаемости. С увеличением частоты максимум диэлектрической проницаемости не только снижается, но и смещается в сторону высоких температур, то есть меньших вязкостей диэлектрика.

При возрастании температуры объем диэлектрика возрастает, и диэлектрическая проницаемость, в соответствии с выражением (2.3), уменьшается. Особенно заметно уменьшение e при плавлении и испарении диэлектриков, когда их объем существенно возрастает.

В неполярных диэлектриках диэлектрическая проницаемость практически не зависит от частоты внешнего поля. Это связано с тем, что частота вращения электронов на орбитах велика ~ 1015 -1016 Гц. Поляризация упругого электронного смещения

Повышение температуры увеличивает межатомные расстояния, вследствие чего связь между отдельными ионами ослабляется, и облегчается взаимное смещение ионов под действием внешнего электрического поля. Поэтому при повышении температуры диэлектрическая проницаемость ионных кристаллов возрастает. Поляризация упругого ионного смещения Время установления этого механизма поляризации сравнимо с периодом оптических колебаний ионов в кристаллической решетки и составляет 10-12-10-13 с. Поэтому до частот 1012- 1013 Гц диэлектрическая проницаемость веществ с ионной связью не зависит от частоты внешнего поля.

Влияние температуры на диэлектрическую проницаемость материалов с различными механизмами поляризации.Поляризация упругого электронного смещения. Этот вид поляризации связан со смещением электронных оболочек атомов относительно ядер и имеет место во всех диэлектриках, за исключением абсолютного вакуума.

Поляризация упругого ионного смещения вызвана упругим смешением ионов из равновесных положений под действием внешнего электрического поля.Повышение температуры увеличивает межатомные расстояния, вследствие чего связь между отдельными ионами ослабляется, и облегчается взаимное смещение ионов под действием внешнего электрического поля. Поэтому при повышении температуры диэлектрическая проницаемость ионных кристаллов возрастает.

Дипольно-релаксационная поляризация наблюдается во многих твердых и жидких диэлектриках с полярными группами: компаунды, бакелит, аминопласты и др. При дипольно-релаксационной поляризации происходит смещение полярных молекул или смещение радикалов, входящих в состав крупных молекул.

Будет интересно➡  Что такое короткое замыкание

Диэлектрическая проницаемость полярных веществ сильно зависит от их температуры и частоты внешнего электрического поля. При низких температурах, когда подвижность молекул и радикалов, входящих в состав молекул, мала, поворот диполей на большие углы невозможен, и в материале наблюдается поляризация электронного упругого смещения и дипольно-упругая поляризация. В связи с этим диэлектрическая проницаемость полярных материалов при низких температурах мала (e=2-2,5). С возрастанием температуры подвижность диполей увеличивается, и облегчается их ориентация под действием внешнего поля. Следовательно, диэлектрическая проницаемость растет. При дальнейшем росте температуры кинетическая энергия теплового движения диполей возрастает настолько, что броуновское движение диполей разрушает ориентацию, задаваемую внешним полем. Диэлектрическая проницаемость снижается.

Влияние частоты электрического поля на тангенс угла потерь в полярных и не полярных диэлектриков.

При нахождении диэлектрика в электрическом поле в нем развиваются два процесса: электропроводность и поляризация. Оба процесса сопровождаются потерями энергии электрического поля. Потери на электропроводность при росте частоты снижаются. Однако на определенных частотах резко возрастает резонансная поляризация, поэтому коэффициент диэлектрических потерь Кd на этих частотах резко возрастает. На рис.39 показана зависимость коэффициента диэлектрических потерь от частоты электрического поля для диэлектрика сложного состава.

На определенных частотах начинается резонансная поляризация полярных молекул различных компонентов диэлектрика, а следовательно, возрастают потери.

Наличие максимумов коэффициента диэлектрических потерь на определенных частотах ограничивает применение полярных диэлектриков в высоко частотных полях. Так, в качестве изоляции в высокочастотных радиокабелях типа РК-75 используется полиэтилен с неполярными молекулами. В силовых проводах типа АППВ в качестве материала изоляции используется полихлорвинил с полярными молекулами. Если в радиокабеле вместо полиэтилена использовать полихлорвинил, то при рабочих частотах – десятки и сотни мегагерц – потери будут настолько велики, что сигнал по кабелю проходить не будет. Напротив, в силовом кабеле недопустимо использовать в качестве изоляции полиэтилен, поскольку у материалов с неполярными молекулами прочность существенно ниже, чем у материалов с полярными молекулами.  Влияние частоты электрического поля на тангенс угла потерь неполярных диэлектриков.

С увеличением частоты электрического поля длина пробега ионов за время полупериода колебаний уменьшается, а следовательно, уменьшается запасенная ими кинетическая энергия. Кроме того, снижается вероятность столкновения иона со структурными единицами материала. В силу этих причин при росте частоты электрического поля диэлектрические потери снижаются

Измерение диэлектрической проницаемости

Относительная диэлектрическая проницаемость вещества ε может быть определена путём сравнения ёмкости тестового конденсатора с данным диэлектриком (Cx) и ёмкости того же конденсатора в вакууме (C0):

ε=CxC0.

Cуществуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров.

Предыдущая
ТеорияЧто такое элемент Пельтье и как его сделать своими руками?
Следующая
ТеорияКакими величинами определяется комплексная диэлектрическая проницаемость?
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять