Фотоэффект в физике: что это такое, формулы, виды, применение

Фотоэффект в физике: что это такое, формулы, виды, применение

Что такое фотоэффект

Фотоэффект — испускание электронов из вещества под действием падающего на него света.

Александр Столетов

Александр Столетов

Явление фотоэффекта было открыто в 1887 году Генрихом Герцем. Фотоэффект также был подробно изучен русским физиком Александром Столетовым в период с 1888 до 1890 годы. Этому явлению он посвятил 6 научных работ.

Для наблюдения фотоэффекта нужно провести опыт. Для этого понадобится электрометр и подсоединенная к нему пластинка из цинка (см. рисунок ниже). Если дать пластинке положительный заряд, то при ее освещении электрической дугой скорость разрядки электрометра не изменится. Но если цинковую пластинку зарядить отрицательно, то свет от дуги заставить электрометр разрядиться очень быстро.

Фотоэффект в физике: что это такое, формулы, виды, применение

Наблюдаемое во время этого эксперимента явление имеет простое объяснение. Свет вырывает электроны с поверхности цинковой пластинки. Если она имеет отрицательный заряд, электроны отталкиваются от нее, что приводит к полному разряжению электрометра. Причем при повышении интенсивности освещения скорость разрядки увеличивается, ровно, как и наоборот: при уменьшении интенсивности освещения электрометр разряжается медленно. Если же зарядить пластинку положительно, то электроны, которые вырываются светом, притягиваются к ней. Поэтому они оседают на ней, не изменяя заряд электрометра.

Если между световым пучком и отрицательно заряженной пластиной поставить лист стекла, пластинка перестанет терять электроны независимо от интенсивности излучения. Это связано с тем, что стекло задерживает ультрафиолетовое излучение. Отсюда можно сделать следующий вывод:

Явление фотоэффекта может вызвать только ультрафиолетовый участок спектра.

Волновая теория света не может объяснить, почему электроны могут вырываться только под действием ультрафиолета. Ведь даже при большой амплитуде и силе волн электроны остаются на месте, когда, казалось бы, они должны непременно быть вырванными.

Открытие фотоэффекта

Во второй половине XIX в. Г. Герц исследовал условия возникновения электрического пробоя промежутка между электродами. Было обнаружено, что пробой (возникновение искры) сильно облегчается, если освещать электроды ультрафиолетовым излучением. Это явление было названо фотоэффектом. Г. Герц опубликовал результаты своих наблюдений, однако никакого объяснения им он не дал. Первым исследователем, тщательно изучившим фотоэффект, был А. Столетов. Он же разработал первую теоретическую модель фотоэффекта.

Схема опыта А. Столетова следующая. Используется запаянная колба с вакуумом, в которую введены два электрода. К электродам подключено внешнее напряжение, катод может освещаться через специальное кварцевое окно (обычное стекло задерживает ультрафиолетовые лучи). Для определения тока в цепи используется амперметр.

Если катод затемнен, ток в цепи не идет. Освещение катода приводит к появлению тока, даже если напряжение между электродами равно нулю. При увеличении этого напряжения ток сперва растет, а потом достигает насыщения и далее остается постоянным. При подаче обратного напряжения ток начинает уменьшаться, пока не уменьшится до нуля.

На основе наблюдений А. Столетов вывел закон фотоэффекта: сила фототока насыщения прямо пропорциональна интенсивности светового излучения.

Фотоэффект в физике: что это такое, формулы, виды, применение
Рис. 2. График фототока от напряжения.

Об истории открытия внешнего фотоэффекта

Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.

Генрих Герц был основоположником и первооткрывателем внешнего фотоэффекта. В 1887 году он проводил исследования с открытым резонатором и заметил, что при освещении ультрафиолетом цинкового разрядника (электрический аппарат, предназначенный для ограничения перенапряжений в электрических сетях и установках), прохождение искры заметно облегчается.

В России физические основы фотоэффекта изучал физик Александр Столетов, в 1888 – 1890 годах он опубликовал шесть работ в этой тематике. Столетов был первым физиком, который вывел закон внешнего фотоэффекта. В своих исследованиях он вплотную подошел к выводу о существовании красной границы фотоэффекта.

Позже, в 1891 году немецкие физики-экспериментаторы Эльстер и Гейтель при изучении щелочных металлов пришли к выводу, что, чем выше электроположительность металла, тем ниже граничная частота, при которой он становится фоточувствительным.

В 1898 году английский физик Томсон с помощью экспериментов выяснил, что поток электрического заряда, выходящий из металла при внешнем фотоэффекте, представляет собой поток открытых им ранее частиц (позже названных электронами). Поэтому увеличение фототока с ростом освещенности понимают как увеличение количества выбитых электронов с ростом освещенности.

Немецкий физик Филипп Ленард в 1900 — 1902 годах продолжал исследования предшественников. Ему стало понятно что, энергия вылетающего электрона всегда связана с частотой падающего излучения и практически не зависит от интенсивности облучения.

Используя свои исследования и результаты исследований других физиков-экспериментаторов (в особенности гипотезу о квантовой природе света Макса Планка), Альберт Эйнштейн дал окончательное объяснение и определение явлению фотоэффекта в 1905 году. За что в 1921 году он получил Нобелевскую премию.

Будет интересно➡  Законы Кирхгофа простыми словами: определение для электрической цепи

В работе Эйнштейна содержалась новая гипотеза — если Планк в 1900 году предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций.

В 1906 — 1915 годах фотоэффект заинтересовал Роберта Милликена. Он установил точную зависимость запирающего напряжения от частоты и на его основании смог вычислить постоянную Планка. В 1923 году Милликен был удостоен Нобелевской премии в области физики за исследования элементарного электрического заряда и фотоэлектрического эффекта.

«Я потратил десять лет моей жизни на проверку этого эйнштейновского уравнения 1905 г., — писал Милликен, — и вопреки всем моим ожиданиям я вынужден был в 1915 г. безоговорочно признать, что оно экспериментально подтверждено, несмотря на его несуразность, так как казалось, что оно противоречит всему, что мы знаем об интерференции света»

Внешний фотоэффект используется в вакуумных фотоэлементах, фотоумножителях, в видиконах (трубки телекамер и видеокамер).

Об истории открытия внутреннего фотоэффекта

В 1839 году Александр Беккерель зарегистрировал фотовольтаический эффект в электролите. А в 1873 году Уиллоуби Смиту удалось выяснить, что селен является фотопроводящим.

Внутренний фотоэффект — явление возрастания электропроводности и уменьшения сопротивления, вызванное облучением. В условиях внутреннего фотоэффекта под действием света происходит перераспределение электронов по энергетическим уровням в диэлектриках и полупроводниках (исключением являются металлы). Такое явление называется фотопроводимостью.

Ядерный фотоэффект

Ядро при поглощении гамма-кванта получает избыток энергии и становится составным ядром. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном нейтронов. Такой распад ведет к ядерным реакциям, которые и называются фотоядерными, а явление испускания нуклонов (нейтронов и протонов) в этих реакциях — ядерным фотоэффектом.

Основные законы фотоэффекта

Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:

hv=Aвых+EК,

где h ― постоянная Планка (6,6 ∙ 10-34 Дж∙с);

v ― частота света, Гц;

Aвых ― работа выхода, Дж;

EК ― кинетическая энергия фотона, Дж.

Процесс фотоэффекта происходит со скоростью света. Работа выхода напрямую зависит от состава материала и его поверхности, но не зависит от частоты и интенсивности света.

Первый закон фотоэффекта (закон Столетова): сила фототока насыщения прямо пропорциональна интенсивности светового излучения. Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте). Следовательно, чем больше энергии несет излучение, тем ощутимее наблюдаемый результат.

Второй закон фотоэффекта: максимальная кинетическая энергия выбиваемых светом электронов возрастает с частотой света и не зависит от его интенсивности.

Краткая формулировка третьего закона фотоэффекта: абсолютно для каждого вещества при определенном состоянии его поверхности существует граничная частота света, ниже которой фотоэффект не наблюдается. Эта частота и соответствующая ей длина волны называется красной границей фотоэффекта.

Первый закон фотоэффекта

Фотоэффект в физике: что это такое, формулы, виды, применение

Возьмем стеклянный баллон и выкачаем из него воздух (смотрите рисунок выше). Затем поместим в него два электрода. На электроды подадим напряжение и будем регулировать его с помощью потенциометра и измерять при помощи вольтметра.

В верхней части нашего баллона есть небольшое кварцевое окошко, которое пропускает весь свет, в том числе ультрафиолетовый. Через него падает свет на один из электродов (в нашем случае на левый электрод, к которому присоединен отрицательный полюс батареи). Мы увидим, что под действием света этот электрод начнет испускать электроны, которые при движении в электрическом поле будут создавать электрический ток. Вырванные электроны будут направляться ко второму электроду. Но если напряжение небольшое, второго электрода достигнут не все электроны. Если интенсивность излучения сохранить, но увеличить между электродами разность потенциалов, то сила тока будет увеличиваться. Но как только она достигнет некоторого максимального значения, рост силы тока при дальнейшем увеличении напряжения прекратится. Максимальное значение силы тока будем называть током насыщения.

Фотоэффект в физике: что это такое, формулы, виды, применение

Ток насыщения — максимальное значение силы тока, также называемое предельным значением силы фототока.

Ток насыщения обозначается как Iн. Единица измерения — А (Кл/с). Численно величина равна отношению суммарному заряду вырванных электронов в единицу времени:

Iн=qt..

Если же мы начнем изменять интенсивность излучения, то сможем заметить, что фототок насыщения также начинается меняться. Если интенсивность излучения ослабить, максимальное значение силы тока уменьшится. Если интенсивность светового потока увеличить, ток насыщения примет большее значение. Отсюда можно сделать вывод, который называют первым законом фотоэффекта.

Первый закон фотоэффекта:

Число электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. Иными словами, фототок насыщения прямо пропорционален падающему световому потоку Ф.

Второй закон фотоэффекта

Теперь произведем измерения кинетической энергии, то есть, скорости вырывания электронов. Взгляните на график, представленный ниже. Видно, что сила фототока выше нуля даже при нулевом напряжении. Это говорит о том, что даже при нулевой разности потенциалов часть электронов достигает второго электрода.

Будет интересно➡  Что такое короткое замыкание

Фотоэффект в физике: что это такое, формулы, виды, применение

Если мы поменяем полярность батареи, то будем наблюдать уменьшение силы тока. Если подать на электроды некоторое значение напряжения, равное Uз, сила тока станет равно нулю. Это значит, что электрическое поле тормозит вырванные электроны, останавливает их, а затем возвращает на тот же электрод.

Напряжение, равное Uз, называют задерживающим напряжением. Оно зависит зависит от максимальной кинетической энергии электронов, которые вырываются под действием света. Измеряя задерживающее напряжение и применяя теорему о кинетической, можно найти максимальное значение кинетической энергии электронов. Оно будет равно:

mv22..=eUз

Опыт показывает, что при изменении интенсивности света (плотности потока излучения) задерживающее напряжение не меняется. Значит, не меняется кинетическая энергия электронов. С точки зрения волновой теории света этот факт непонятен. Ведь чем больше интенсивность света, тем большие силы действуют на электроны со стороны электромагнитного поля световой волны и тем большая энергия, казалось бы, должна передаваться электронам. Но экспериментальным путем мы обнаруживаем, что кинетическая энергия вырываемых светом электронов зависит только от частоты света. Отсюда мы можем сделать вывод, являющийся вторым законом фотоэффекта.

Второй закон фотоэффекта:

Максимальная кинетическая энергия фотоэлектронов линейно растет с частотой света и не зависит от его интенсивности.

Причем, если частота света меньше определенной для данного вещества минимальной частоты νmin, фотоэффект наблюдаться не будет.

Формула фотоэлектрического эффекта

Мы используем следующее соотношение для расчета физических величин: h * f = Ekin + WA

Если свет обладает энергией, достаточной для выброса электронов, мы можем вычислить граничную частоту по следующей формуле: fгр = WA / h .

Используя формулу для кинетической энергии, мы определяем скорость освобожденных электронов по формуле:

Формула скорость освобожденных электронов

Методы обнаружения фотоэффекта

Далее мы покажем вам два метода обнаружения фотоэлектрического эффекта и, следовательно, выхода электронов.

Метод встречного поля

В методе встречного поля металлический катод облучается монохроматическим светом с частотой f. Без приложенного напряжения можно обнаружить фототок. Если приложить противодействующее напряжение UG так, чтобы катод был заряжен положительно, а анод — отрицательно, то электроны, высвобождаемые внешним фотоэлектрическим эффектом, замедляются. Необходимая для этого работа: W = e * UG .

Фотоэффект: метод встречного поля
Рис. 1. Фотоэффект: метод встречного поля

Если напряжение настолько велико, что электроны не достигают анода, то применяется следующее соотношение: Ekin = e * UG.

Встречное поле полностью компенсирует кинетическую энергию электронов. Из этой зависимости мы можем определить скорость электронов. Метод встречного поля также дает нам возможность определить постоянную Планка h. При известной работе выхода, h можно найти из уравнения: h * f = e * UG + WA

Стержень с фотоэффектом

Мы можем воспроизвести фотоэлектрический эффект в эксперименте со стержнем из ПВХ и металлической пластиной, подключенной к электрометру. Если стержень отрицательно заряжен в результате трения, то он имеет избыток электронов. Металлическая пластина нейтральна, электрометр не отклоняется.

Стержневой метод
Рис. 2. Стержневой метод — начальное состояние

Если привести стержень в контакт с пластиной, то избыточный заряд в стержне уравновесится. В результате на пластине появляется избыток электронов, и электрометр показывает отрицательное значение.

Компенсация избыточного заряда в стержне
Рис. 3. Компенсация избыточного заряда в стержне

Если облучать металлическую пластину лампой с парами ртути, электрометр становится положительным. Электроны высвобождаются из пластины под действием внешнего фотоэлектрического эффекта. В металлической пластине не хватает электронов.

Облучение металлической пластины
Рис. 4. Облучение металлической пластины

Использование фотоэффекта на практике

На практике фотоэффект применяется для превращения энергии света в электрическую энергию. В науке и технике широко используют фотоэлементы – устройства, изменяющие электрические свойства при облучении их видимым светом. Это позволяет обнаружить наличие / отсутствие света или изменение его интенсивности.

Внешний фотоэффект обычно используется в вакуумных фотоэлементах. Два электрода – катод и анод – располагают в стеклянной колбе, из которой откачан воздух. Катод выполняют из металла с малой работой выхода. Если к катоду и аноду приложить напряжение соответствующей полярности, то электрического тока в цепи не будет. А если на катод будет падать свет, то он начнет испускать электроны. За счет этой эмиссии в цепи пойдет ток. Такие приборы имеют сложную и неудобною конструкцию, их область применения постоянно сокращается за счёт распространения полупроводниковых фотоэлементов.

Вакуумный фотоэлемент и включение его в цепь.
Вакуумный фотоэлемент и включение его в цепь

В полупроводниковых устройствах используется внутренний фотоэффект. Например, фоторезистор состоит из диэлектрической подложки, на которую напылён проводящий слой. Поверх него змейкой нанесён полупроводник, в котором в нормальном состоянии имеется небольшое количество основных носителей, его сопротивление велико, и ток (при приложении напряжения) через этот элемент невелик. Но как только на полупроводник попадает свет, за счёт внутреннего фотоэффекта высвобождается большое количество электронов, сопротивление падает, и ток в цепи резко возрастает.

Внутреннее устройство фоторезистора.
Внутреннее устройство фоторезистора

При этом величина сопротивления фотоэлемента (следовательно, тока в цепи), независимо от его конструкции, зависит от уровня освещённости, а также от спектра падающего излучения. Поэтому по изменению тока через фотоэлемент можно судить не только о наличии света, но и о его интенсивности, а также цвете (или цветовой температуре).

Будет интересно➡  Можно ли преодолеть скорость света?

Зависимость сопротивления фоторезистора от уровня освещенности.
Зависимость сопротивления фоторезистора от уровня освещенности

Это свойство фотоэлементов используется в различных приборах:

  • фотореле (для счёта предметов или включения освещения;
  • светочувствительных матрицах электронных фотоаппаратов и видеокамер;
  • оптических измерительных приборы;
  • прочих устройствах, реагирующих на изменение освещенности.

Существуют полупроводниковые фотоэлементы с p-n переходом, принцип работы которых построен на вентильном фотоэффекте. Во время этого явления электродвижущая сила (называемая фотоЭДС) возникает при отсутствии других воздействий. Если соединить противоположные области p-n перехода проводником, в нём возникнет ток. Это даёт два принципиальных преимущества перед обычными фотоэлементами:

  • они могут формировать сигнал, зависимый от падающего светового излучения, без внешнего источника питания;
  • подобные фотоэлементы напрямую преобразовывают энергию фотонов в электроэнергию.

Вторая особенность позволяет создавать эффективные «солнечные батареи» — источники электроэнергии, преобразующие энергию солнца в электрический ток.

Так выглядели первые солнечные батареи.
Первые солнечные батареи выглядели так

Впервые попытка промышленного использования даровой электроэнергии, полученной из солнечного света, была осуществлена в США еще в XIX веке. Но на тот момент стоимость таких устройств была большой, а КПД низким. По мере развития технологий, строить солнечные панели становилось все дешевле, а коэффициент преобразования становился всё выше. На сегодняшний день это направление «зеленой» энергетики успешно развивается и часто составляет серьезную конкуренцию традиционным способам выработки.

Таким образом, открытое около полутора веков явление поставлено на службу человеку. Явление неплохо изучено с точки зрения физики, но, скорее всего, некоторые открытия ещё впереди.

Фотоэффект нашел широкое практическое применение в медицине, технике и других сферах. Превращение света в электрический ток используется для передачи изображения на огромные расстояния. Это используется в телевидении.

Фотоэлементы применяют при считывании информации с оптических дисков. Их же применяют, например, в солнечных батареях для получения электроэнергии. Недавно фотоэффект начали применять в уличном освещении, специальные фотоэлементы сами распознают, когда нужно включить или выключить освещение. Полупроводниковые фотоэлементы используются в солнечных батареях на космических кораблях.

Использование фотоэффекта в медицине при рентгеновских исследованиях (в электронно-оптическом преобразователе) для усиления яркости изображения помогает уменьшить дозу облучения человека.

Внутреннему фотоэффекту нашлось применение в категориях устройств, преобразующих световую энергию в электрическую или изменяющих свои свойства под действием падающего света: фотосопротивления, фотодиоды, фототранзисторы, фоторезисторы, фотомикросхемы.

Красная граница фотоэффекта

При достижении определенной граничной частоты энергии фотона хватит лишь для того, чтобы заставить электрон совершить работу выхода (кинетическая энергия станет равной нулю). Если частота фотона будет ниже этого нижнего предела, то энергии фотона не хватит на совершение работы выхода, и фотоэффекта не произойдет. Это также прямо следует из формулы Эйнштейна.

Граничная частота νmin определяет нижнюю границу, при которой возможен выход электрона из вещества. При этом А= hνmin. Этой частоте соответствует наибольшая критическая длина волны λкр =с/ νmin, и А=h*c/ λкр.

Так как со снижением частоты (увеличением длины волны) цвет видимого излучения приближается к красному, то этот предел называют «красной границей» внешнего фотоэффекта. Она определяется свойствами вещества, которое облучается фотонами, и не зависит от интенсивности светового излучения (от количества фотонов). Так, для серебра λкр = 260 нм, а для цезия λкр = 620 нм. Кроме того, νmin зависит от состояния облучаемой поверхности материала, на которую падают кванты света. Закон красной границы называется третьим законом фотоэффекта.

Современная установка для исследования фотоэффекта

Современная установка для изучения фотоэффекта представляет собой два электрода, помещенных в стеклянный баллон, из которого выкачан воздух (рис. 210). На один из электродов через кварцевое «окошко» падает свет. В отличие от обычного стекла кварц пропускает ультрафиолетовое излучение. На электроды подается напряжение, которое можно менять с помощью потенциометра R и измерять вольтметром V. К освещаемому электроду К − катоду подсоединяют отрицательный полюс батареи. Под действием света катод испускает электроны, которые направляются электрическим полем к аноду, создается электрический ток. Значение силы тока фиксируется миллиамперметром.

Фотоэффект в физике и его применение - формулы и определение с примерами

Краткие итоги

Явление фотоэффекта открыто Г. Герцем в 1887 г. и исследовано Столетовыми Ленардомв 1888 г. Объяснение фотоэффекта противоречило волновой теории света.

Опираясь на идеи Планка о квантовом характере излучения, Эйнштейн в 1905 г.создал теорию фотоэффекта. Свет рассматривался в ней как фотонный газ – электромагнитное излучение, состоящее из потоков световых квантов (фотонов) с энергией E=hν, обладающей скоростью (с), массой (m), импульсом (p), частотой (ν), длиной волны (λ). Применяя закон сохранения энергии, Эйнштейн получилуравнение дляфотоэффекта, описывающее взаимодействие одного кванта света с одним электроном:

Данное уравнение позволило объяснить экспериментальные факты, полученные в ходе исследования фотоэффекта с квантовой позиции.

Предыдущая
ТеорияОтражение света
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять