Что такое скорость света, чему она равна и как её измеряют?

Что такое скорость света, чему она равна и как её измеряют?

Что такое скорость света

Физическое определение термина достаточно простое. Под «скоростью» ученые понимают быстроту перемещения света. То есть, как быстро световые частицы могут преодолевать различные расстояния.

Движение световых частиц
Перемещение световых частиц

Однако вокруг нас пространство не пустое. На Земле есть жидкости и газы. Мы их можем не видеть, но эти вещества состоят из молекул, которые становятся препятствиями для частиц света – фотонов. Поэтому их скорость может различаться в разных средах и достигает максимума только в пустоте вакуума.

Немного предыстории

Во времена античности и средневековья считали, что скорость света бесконечна. Одним из первых, кто в этом усомнился, был Галилей. Хотя его коллеги по “цеху”, Кеплер, Декарт и др. продолжали придерживаться “традиционного” подхода.

Идея о том, что скорость света имеет некий предел, родилась в процессе наблюдения за спутником Юпитера Ио. Как оказалось, время между затмениями Ио уменьшается, когда Земля приближается к Юпитеру, и увеличивается, когда расстояние между планетами возрастает. Из этого астрономы Рёмер и Кассини сделали вывод, что данная неравномерность вероятно связана с тем, что отражённому от Ио свету Солнца требуется некоторое время, чтобы достичь наблюдателя на Земле.

Надо отметить, что в те времена учёные полагали, что межзвёздная среда наполнена эфиром. Поэтому полемика относительно скорости света по сути сводилась к изучению свойств светоносного эфира. Данным вопросом учёные были озадачены до начала XX века. В частности, такие светочи мировой науки, как Пуанкаре и Максвелл были убеждённым сторонником теории эфира.

Одним из первых, кто ввёл скорость света в качестве параметра в уравнения физики был Хендрик Лоренц. Сделал он это именно с целью обоснования наличия неподвижного светоносного эфира. Очень скоро Альберт Эйнштейн использовал уравнения Лоренца для своей специальной теории относительности, однако от идеи светоносного эфира он полностью отказался.

В итоге в начале ХХ века появилось понятие “скорость света в вакууме”, которое на сегодняшний день плотно укрепилось в нашем обиходе. Эта скорость конечна по определению и представляет собой предельную скорость движения частиц и/или распространения волн.

Так ли это на самом деле? Будем разбираться.

Скорость света в различных средах

Свет распространяется в разных средах по-разному. В вакууме и в воздухе скорость света почти не различается, а вот в других средах она меньше. Это зависит от оптической плотности среды — чем она больше, тем меньше скорость распространения света.

Основной характеристикой в данном случае служит показатель преломления среды. Он равен отношению скорости света в вакууме к скорости распространения света в среде.

Абсолютный оказатель преломления среды

n = c/v

n — показатель преломления среды [—]

с — скорость света [м/с]

v — скорость света в заданной среде [м/с]

Ниже представлена таблица скоростей света в разных средах и показателей преломления в них.

СредаСкорость света, км/сАбсолютный показатель преломления среды

Вакуум300 0001
Воздух299 7041,003
Лед228 7821,31
Вода225 3411,33
Стекло200 0001,5
Сахар192 3001,56
Сероуглерод184 0001,63
Рубин170 3861,76
Алмаз123 8452,42

В прозрачной среде

Через воздух, стекло, воду и другие прозрачные субстанции свет движется медленнее, чем через вакуум. И для каждого вещества есть своя степень «замедления», которая называется абсолютным показателем преломления света и записывается в формулах, как «n». Фактически он означает во сколько раз фотоны медленнее перемещаются через вещество.

Так для воздуха n=1,003, а для воды n=1,33. То есть в водной среде фотоны будут на 33% медлительнее и станут двигаться со скоростью «всего лишь» 225341 км/с.

Рассеивание света в воде
Движение света в воде

В вакууме

Современными учеными эта величина принята за максимальную и постоянную. Именно от нее производятся расчеты для определения других констант. Наиболее точно измерить, какая скорость света в вакууме получилось только в 1975 году. В космической пустоте он перемещается со скоростью: 299792458 м/с. Погрешность вычислений составляет около 1,2 м/с. Но для простоты значение округляется до 300000 км/с.

Как отличается скорость света на Земле и в космосе

Объединяя эти данные, получается, что за пределами нашей, да и любой другой планеты в вакууме скорость распространения света считается максимальной и постоянной. Это верхний предел, быстрее которого ни один объект, с некоторыми оговорками, двигаться не может. На Земле же свет постоянно замедляется из-за различных веществ, через которые фотонам приходится «продираться». Поэтому скорость приходится каждый раз вычислять с поправкой для конкретной среды.

Планеты и звезды
Земля и звезды

В чем фундаментальность скорости света

На самом деле, современная наука знает всего несколько объективных фундаментальных постоянных, которые остаются неизменными при любых условиях. Скорость света не зависит ни от наблюдателя, ни от способа измерения, ни от времени — она действительно постоянна.

Чтобы доказать обратное, можно, например, пропустить луч света через сложную неоднородную среду и он пройдет сквозь нее заметно медленнее, чем через вакуум. Однако при внимательном рассмотрении условий эксперимента окажется, что фотоны двигались с той же скоростью света, но по более сложной траектории.

Чему равна скорость света?

При нахождении не в вакууме, на свет влияют различные условия. Вещество, через которое проходят лучи, в том числе. Если без доступа кислорода количество метров в секунду не меняется, то в среде с доступом воздуха значение изменяется.

Свет проходит медленнее через различные материалы, такие как стекло, вода и воздух. Этому явлению дан показатель преломления, чтобы описать, насколько они замедляют движение света. Стекло имеет показатель преломления 1,5, это означает, что свет проходит через него со скоростью около 200 тысяч километров в секунду. Показатель преломления воды равен 1,3, а показатель преломления воздуха — немного больше 1, это означает, что воздух лишь слегка замедляет свет.

Интересно:  С какой скоростью движется Земля вокруг своей оси и Солнца?

Следовательно, после прохождения через воздух или жидкость, скорость замедляется, становится меньшей, чем в вакууме. Например, в различных водоемах скорость передвижения лучей равна 0.75 от быстроты в космосе. Также при стандартном давлении в 1.01 бар, показатель замедляется на 1.5-2%. То есть при земных условиях скорость света варьируется в зависимости от условий окружающей среды.

Для такого явление придумали специальное понятие — рефракция. То есть преломление света. Это широко используется в различных изобретениях. К примеру, рефрактор — телескоп с оптической системой. Также с помощью этого также создают бинокли и другую технику, суть работы которой заключается в использовании оптики.

Телескоп рефрактор - схема
Телескоп рефрактор – схема

В общем, меньше всего луч поддается рефракции, проходя через обычный воздух. При прохождении через специально созданное оптическое стекло, скорость равняется примерно 195 тысячам километров в секунду. Это практически на 105 тыс км/сек меньше константы.

Формула определения скорости света

Как и любая физическая величина, скорость света имеет свою формулу. Выглядит она таким образом: C = λ/T.

Каждая буква имеет своё значение. Учёные берут эту формулу, как основу для расчёта скорости света в безвоздушном пространстве.

максимальная скорость света

Величина этой скорости в идеальном вакуумном пространстве составляет 299 792 458 метров в секунду. Создать такой вакуум можно только в космосе, поэтому физики рассматривают многие примеры только на примере космического пространства.

Тогда не нужно учитывать различную величину преломления и так далее. В условиях земли идеальный вакуум с постоянной скоростью света можно только в искусственных условиях.

Скорость света также принято называть скоростью фотона.

фотон

Справка! Фотоном называют малейшую частицу света, который больше всего во Вселенной.

В безвоздушном пространстве скорость света не будет никак изменяться. Она не сможет увеличиваться и уменьшаться в идеальных условиях, так как нет никаких дополнительных преломлений.

Если рассматривать пример скорости света на Земле, то минимальная скорость света будет изменяться в зависимости от дополнительных условий.

Как измеряли скорость света?

Самые первые ученые пытались измерить эту величину. Использовались разные методы. В период античности, люди науки считали, что она бесконечная, поэтому невозможно ее измерить. Это мнение осталось надолго, вплоть до 16-17 века. В те времена появились другие ученые, которые предположили, что луч имеет конец, а скорость можно измерить.

Измерение скорости света
Измерение скорости света

Известный астроном из Дании Олаф Рёмер вывел знания о скорости света на новый уровень. Он заметил, что затмение спутника Юпитера опаздывает. Ранее на это никто не обращал внимание. Следовательно, он решил посчитать скорость.

Он выдвинул приблизительную скорость, которая была равна около 220 тысячам километров в секунду. Позже за исследования взялся ученый из Англии Джеймс Брэдли. Он хоть и не был прав полностью, но слегка приблизился к текущим результатам исследований.

Через некоторое время большинство ученых заинтересовались этой величиной. В исследованиях принимали участие люди науки из разных стран. Однако до 70-х годов 20 века каких либо грандиозных открытий не было. С 1970-х, когда придумали лазеры и мазеры (квантовые генераторы), ученые провели исследования и получили точную скорость. Текущее значение актуально с 1983 года. Исправляли лишь небольшие погрешности.

Опыт Галилея

В 1607 году великий Галилео Галилей усомнился, что скорость светового луча бесконечна и предложил простую идею для опровержения. Он с помощником встал на разные холмы, расстояние между которыми было заранее посчитано. Вначале один из них должен был открыть заслонку фонаря. Как только второй исследователь увидит свет, он тоже должен был посветить в обратную сторону.

Ученый Галилео Галилей
Галилео Галилей

Дальше предстояла задача школьного уровня. Удвоенное расстояние надо было поделить на время. Но визуальных задержек движения света ученый не заметил, поэтому признал затею провальной. Проблема измерения была не только в реально слишком большой стремительности изучаемого объекта, но и в физиологических ограничениях скорости реакции самих исследователей.

Опыт Рёмера и Брэдли

Об этом исследовании уже было кратко написано выше. Это один из самых прогрессивных опытов того времени. Рёмер использовал знания в астрономии для измерения скорости передвижения лучей. Происходило это в 76 году 17 века.

Исследователь наблюдал за Ио (спутником Юпитера) через телескоп. Он обнаружил следующую закономерность: чем больше наша планета удаляется от Юпитера, тем большая задержка в затмении Ио. Самая большая задержка составляла 21-22 минуты.

Предположив, что спутник отдаляется на расстояние равное длине диаметра орбиты, ученый разделил расстояние на время. В результате он получил 214 тысячи километров в секунду. Хоть это исследование считается очень примерным, потому что расстояние было примерным, он приблизился к текущему показателю.

В 18-м веке Джеймс Брэдли дополнил исследование. Для этого он использовал аберрацию — изменение положение космического тела из-за движения Земли вокруг солнца. Джеймс измерил угол аберрации, и, зная скорость движения нашей планеты, он получил значение в 301 тысячу километров в секунду.

Физо и его расчёты

Многие учёные отнеслись к расчётам предыдущих коллег достаточно скептически. Но не взирая на это, результаты были близки к настоящей длине, которая подтверждена сейчас официально и широко используется в расчётах, тогда этого не знали и пытались пересчитать.

физо

Подобно Галилею, Физо игнорировал наблюдение за космическими телами и проводит опыт в лабораторных условиях. Эксперимент был прост: луч направлялся на зеркало, и отразившись проходил через колёсные зубцы.

После этого свет отражался на дополнительную поверхность, расположенную на достаточном расстоянии. Вращение колеса увеличивалось до тех пор, пока луч не попадал на то самое зеркало. Тогда были получены цифры в 313 тысяч километров, после того, как пересмотрели эти расчёты, была определена более точная цифра.

Исследователи и обычные люди отнеслись скептически к опыту Рёмера и Джеймса Брэдли. Несмотря на это, результаты были самыми близкими к истине и актуальными на протяжении более века. В 19 столетии Арман Физо — ученый из столицы Франции, Парижа, внес вклад в измерение этой величины. Он использовал способ вращающегося затвора. Также, как и Галилео Галилей со своим помошником, Физо не наблюдал за небесными телами, а исследовал в лабораторных условиях.

Опыт Физо
Опыт Физо

Принцип опыта прост. Луч света был направлен на зеркало. Отражаясь от него, свет проходил через зубцы колеса. Затем попадал на еще одну отражающую поверхность, которая была расположена на расстоянии в 8.6 км. Колесо вращали, увеличивая скорость, пока луч не будет видно в следующем зазоре. После подсчетов, ученый получил результат 313 тыс. км/сек.

Позже исследование повторил французский физик и астроном Леон Фуко, получив результат 298 тыс. км/сек. Самый точный результат на то время. Позже измерения проводились при помощи лазеров и мазеров.

Какое значение скорости света можно назвать самым точным

Поскольку определение скорости света – термин не новый, учёные сделали достаточное количество открытий и провели множество исследований, касательно света и его преломления.

скорость света чему равна

На сегодняшний день самым точным значение скорости света является – 299 792 километра в секунду. Такое число было установлено еще в 1933 году, и это значение актуально по сей день.

Справка! Со временем произошли погрешности в измерении метра, поэтому число неоднократно искажалось.

Возможна ли сверхсветовая скорость?

Существуют объекты быстрее скорости света. Например, солнечные зайчики, тень, колебания волн. Хотя теоретически они могут развить сверхсветовую скорость, энергия, которую они выделяют не будет совпадать с вектором их движения.

Если световой луч проходит, к примеру, через стекло или воду, то его могут обогнать электроны. Они не ограничены в скорости передвижения. Следовательно, в таких условиях свет не движется быстрее всех.

Этот феномен назван эффектом Вавилова — Черенкова. Чаще всего встречается в глубоких водоемах и реакторах.

Достижима ли для нас скорость света?

Очевидно, что освоение дальних уголков Вселенной немыслимо без космических кораблей, летящих с огромной скоростью. Желательно со скоростью света. Но возможно ли такое?

Барьер скорости света – одно из следствий теории относительности. Как известно, увеличение скорости требует увеличения энергии. Скорость света потребует практически бесконечной энергии.

Увы, но законы физики категорически против этого. При скорости космического корабля в 300000 км/сек летящие навстречу ему частицы, к примеру, атомы водорода превращаются в смертельный источник мощнейшего излучения, равного 10000 зивертов/сек. Это примерно то же самое, что оказаться внутри Большого адронного коллайдера.

Летать со скоростью света

По мнению ученых Университета Джона Хопкинса, пока в природе не существует адекватной защиты от столь чудовищной космической радиации. Довершит разрушение корабля эрозия от воздействия межзвездной пыли.

Еще одна проблема световой скорости – замедление времени. Старость при этом станет намного более продолжительной. Также подвергнется искривлению зрительное поле, в результате чего траектория движения корабля будет проходить как бы внутри тоннеля, в конце которого экипаж увидит сияющую вспышку. Позади корабля останется абсолютная кромешная тьма.

Так что в ближайшем будущем человечеству придется ограничить свои скоростные «аппетиты» 10 % от скорости света. Это означает, что до ближайшей к Земле звезды – Проксимы Центавра (4,22 св. лет) придется лететь примерно 40 лет.

Почему ничто не может преодолеть скорость света?

Чему равна скорость света и какие объекты способны ее преодолеть

Если вы создадите или обнаружите объект, обладающий отличной от нуля массой или имеющий свойство каким-либо образом взаимодействовать с другими частицами, то вы изобретете машину времени. При этом ничего подобного в известном нам мире не наблюдалось ни разу. Упрощая научный язык, опишем ситуацию следующим образом:

Представим события X и Y, при этом событие X является причиной события Y, а Y, соответственно, является следствием X. Например, событие X — это вспышка сверхновой в далекой галактике, а Y — это регистрация ее частиц астрономами на Земле. Если расстояние между X и Y больше, чем время между ними (T), умноженное на скорость света (C), то в разных системах отсчета мы получим три разных результата:

1. Событие X произошло раньше события Y;
2. Событие Y произошло раньше события X;
3. События X и Y произошли одновременно.

Очевидно, что два последних варианта едва ли возможны с точки зрения современной науки, а значит ничто не может переместиться или передать информацию быстрее скорости света.

Впрочем, как насчет такой ситуации: вы берете очень мощный фонарик, направляете его на Марс, а в луче света двигаете палец — если вы делаете это достаточно быстро, то тень от вашего пальца «бегает» на поверхности Марса быстрее скорости света, что опровергает нашу теорию.

На самом деле, нет. Перемещение тени нельзя назвать перемещением объекта с массой, также как сама по себе тень ни с чем не взаимодействует, а является лишь отсутствием света. Фотоны же от вашего фонарика долетят до Марса с уже известной нам скоростью 299 792 458 метров в секунду.

Чем опасен разгон до скорости света?

Если вы любите научную фантастику про космос, то наверняка знаете истории, где человечество путешествует по Вселенной на космических кораблях. Чтобы быстро перемещаться из одной точки необъятного космоса в другую, они оснащены варп-двигателями, которые позволяют достигать скоростей, превышающих скорость света (300 000 километров в секунду). К сожалению, на данный момент таких двигателей не существует. Но давайте представим, что они уже созданы и вы можете прямо сейчас отправиться в космическое путешествие? Допустим, у вас уже есть фантастический корабль и все, что вам остается — это запустить двигатель и отправиться в любую из понравившихся вам галактик. По словам представителей NASA, во время перемещения по космосу со скоростью света, у пилотов могут возникнуть серьезные проблемы. Чтобы рассказать о них, космическое агентство и художники представили мультфильм, в котором инопланетное существо отправляется в «космический отпуск». Получилось очень познавательно!

Предыдущая
ТеорияОтражение света
Будет интересно➡  Как устроен трехфазный выпрямитель
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять