Выпрямитель мостовой: типы схем и принцип работы

Что такое мостовой выпрямитель и как он устроен

Выпрямитель мостовой в своей однофазной схеме имеет подключение к одному из контактов переменного тока, а к другой стороне диагонали подается нагрузка. В такой схеме диоды работают парно. В одном направлении ток проходит от вторичной обмотки, во втором – по цепи. Такие направления называются полупериодами. Коммутация происходит при переходе переменного напряжения через ноль.

В данной статье будет рассказано все о структуре мостового выпрямителя, какие принципы работы они в себе имеют, как и где используются. В качестве дополнения, статья содержит в себе два наглядных видеоматериала и одной подробное техническое описание, которое можно скачать в формате PDF.

Схема мостового выпрямителя
Схема мостового выпрямителя

Мостовой тип устройства

Трехфазная мостовая схема выпрямления использует шесть диодов (или тиристоров, если требуется управление). Выходное напряжение характеризуется тремя значениями: минимальным U, средним U и пиковым напряжением. Полноволновой трехфазный выпрямитель похож на мост Гейца.

Обычный трехфазный выпрямитель не использует нейтраль. Для сети 230 В / 400 В между двумя входами выпрямителя. Действительно, между 2 входами всегда есть составное напряжение U (= 400 В). Неконтролируемое устройство означает, что нельзя отрегулировать среднее выходное U для этого входного U. Неконтролируемое выпрямление использует диоды.

Управляемый выпрямитель позволяет регулировать среднее выходное напряжение, воздействуя на задержки срабатывания тиристора (используется вместо диодов). Эта команда требует сложной электронной схемы. Диод ведёт себя как тиристор, загружаемый без задержки.

Выходное U трехфазного выходного напряжения. Всего 7 кривых: 6 синусоид и красная кривая, соединяющая верхнюю часть синусоид («синусоидальные шапки»). 6 синусоидов представляют собой 3 напряжения, составляющие U между фазами и 3 одинаковыми напряжениями, но с противоположным знаком:

U31 = -U13U23 = -U32U21 = -U12.

Красная кривая представляет U на выходе выпрямителя, то есть на клеммах резистивной нагрузки. Это U не относится к нейтрали. Она плавает. Это U колеблется между 1,5 В max и 1,732 Вmax (корень из 3). Umax — пиковое значение одного напряжения и составляет 230×1,414 = 325 В. Популярные модели мостовых выпрямителей представлены в таблице ниже:

таблица мостовых выпрямителей
Таблица характеристик популярных моделей мостовых выпрямителей.

Схема работы устройства

Мостовой выпрямитель состоит из четырёх диодов, соединённых в форме «моста», причём вторичная обмотка трансформатора соединяется через противоположные углы «моста», а сопротивление нагрузки соединяется через другие два угла. Выходное напряжение мостового выпрямителя в два раза больше, чем у двухполупериодного выпрямителя, поскольку через «мост» протекает воздействие всего напряжения вторичной обмотки.

В течение первой половины цикла переменного тока, ток протекает от отрицательной стороны вторичной обмотки через диод D1, через сопротивление нагрузки RL, через диод D3, к положительной стороне вторичной обмотки. Этот ток через RL представляет собой положительную полуволну.

Путь тока через мостовой выпрямитель в течение первой половины цикла переменного тока

В течение второй половины цикла переменного тока, ток протекает от отрицательной стороны вторичной обмотки через диод D4, через сопротивление нагрузки RL, через диод D2, к положительной стороне вторичной обмотки. Этот ток через RL представляет собой положительную полуволну.

Свойства трехфазного напряжения

Кривая, действующая только на резистивной нагрузке, неконтролируемое выпрямление (с диодами), не возвращается на ноль, в отличие от моночастотного устройства (мост Грейца). Таким образом, пульсация значительно ниже и размеры индуктора и / или сглаживающего конденсатора менее ограничительны, чем для моста Гейца.

Для получения ненулевого выходного U требуется по меньшей мере две фазы. Минимальное, максимальное и среднее значение напряжения. Численно, для сети 230 В / 400 В выпрямленное напряжение колеблется между минимальным напряжением: 1,5 В мин = 1,5 х (1,414×230) = 488 В, и максимальным: 1,732 Вмакс = 1,732 х (1,414×230) = 563 В.

Будет интересно➡  Все о законе Ома: простыми словами с примерами для "чайников"

Выходное напряжение трехфазного выходного выпрямителя (зум). 3-фазный полноволновый выпрямитель MDS 130A 400V. 5 терминалов: 3 фазы, + и -. Этот выпрямитель содержит 6 диодов.

Таким образом, можно суммировать следующие моменты:

  • 6 диодов, 2 диода на фазу — слабая пульсация по сравнению с одноволновым выпрямителем (мост Гейца);
  • среднее значение выпрямленного напряжения: 538 В для сети 230 В / 400 В;
  • нейтраль не используется трехфазным выпрямителем.

Принцип действия

Устройства выпрямления, детектирования и смешивания сиг­налов можно строить на основе мостовых схем. В этой схеме переменное напряжение, при­кладываемое к противоположным узлам диодного моста, преоб­разуется в пульсирующее выпрямленное напряжение, снимае­мое с двух других узлов. При включении нагрузочного резисто­ра RH выделяемое на нем пульсирующее напряжение является униполярным, что характерно для двухполупериодного выпря­мления.

При действии на входе полуволны переменного напряжения положительной полярности зажим Т1 будет положителен по от­ношению к зажиму 7Y В этом случае электроны поступают на зажим Т2 и выводятся через зажим Т1

Электроны от зажи­ма Т2 поступают на узел с диодами Д3 и Д4, причем только Димеет нужное для проводимости направление включения. По­этому электроны движутся, пройдя через этот диод, к узлу с диодами Д3 .и Дь Полярность напряжения, приложенного к дио­ду Дь является запирающей, так что электроны от этого узла поступают на резистор.

Работа мостового выпрямителя
Работа мостового выпрямителя

При протекании тока через резистор RH на последнем возникает падение напряжения (полярность указана на рисунке). После прохождения через резистор электроны достигают узла с диодами Д2 и Д4. Но только на диоде Ддействует отпирающее напряжение, позволяющее электронам двигаться к выводу Т1потенциал которого положителен при данной полуволне переменного тока. Диод же Д4 оказывается запертым, так как потенциал T2 отрицателен.

Мостовой выпрямитель — устройство или контур, проводящее ток в течение обеих половин цикла переменного тока. Поскольку мостовой выпрямитель использует всё вторичное напряжение, на выходе напряжение в два раза больше чем у двухполупериодного выпрямителя.

В течение следующего полупериода «изменения входного на­пряжения потенциал зажима Т1 отрицательный, а зажима Тположительный. Поэтому электроны от зажима TI перемещают­ся к узлу с диодами Д] и Д2, и, поскольку нужную для прово­димости полярность включения имеет лишь диод Д]? электроны проходят через этот диод и опять поступают на резистор RHсоздавая на нем падение напряжения той же полярности, что и в первом случае. Далее электроны, как и прежде, поступают на узел с диодами Д2 и Д4, однако к зажиму Т2 они проходят че­рез диод Д4.

Интересно почитать! Что такое варистор и где его применяют.

Таким образом, поскольку мостовой выпрямитель использует каждый полупериод входного переменного напряжения и поворачивает фазу колебаний отрицательной полярности для получения униполярного пульсирующего напряжения на выходе схемы, он обеспечивает двухполупериодное выпрямление.

Существенным недостатком схемы двухполупериодного выпрямления со средней точкой является потребность в двух источниках входного напряжения. Такая потребность обусловлена тем, что один из выводов сопротивления нагрузки периодически переключается между двумя источниками напряжения, а другой вывод постоянно подключен к средней точке этих источников.

Однако необходимость в средней точке отпадет, если и второй вывод нагрузки при помощи второй аналогичной диодной схемы будет синхронно и противофазно подключаться к неиспользуемым на соответствующем интервале времени выводам источников питания.

Будет интересно➡  Фантомное питание для микрофона: схема подключения

Схемотехническая реализация такого метода представлена ниже. Эта схема носит название однофазного мостового выпрямителя и является, вероятно, самой распространенной из всех схем выпрямления, предназначенных для работы с однофазными источниками переменных напряжений.

Также как и в двухполупериодной схеме выпрямления со средней точкой, в мостовой схеме напряжение прикладывается к нагрузке в течение всего периода изменения напряжения Uвх. При этом его значение при Uвх=Uвх1+Uвх2 в два раза превышает выходное напряжение схемы рис. 3.4-8. Поэтому при одном и том же напряжении нагрузки в мостовой схеме к обратносмещенным диодам прикладывается напряжение в два раза меньшее, чем в схеме рис. 3.4-8 (Uобрmax=Uвхmax=π⋅Uнср/2.

Основная частота пульсаций выпрямленного напряжения в двухполупериодной мостовой схеме будет равна удвоенной частоте входного напряжения. Коэффициент пульсаций такой же, как и в двухполупериодной схеме со средней точкой: Kп=0,67.

Трехфазный мостовой выпрямитель
Трехфазный мостовой выпрямитель

Особенностью мостовой схемы является то, что в ней последовательно с нагрузкой все время включено два диода, в то время как в описанных выше однофазной однополупериодной и однофазной двухполупериодной схемах такой диод один.

Поэтому при низких входных напряжениях (4…5 В) использование мостовой схемы может оказаться неэффективным (падение напряжения на диодах по величине будет сравнимо с выходным напряжением выпрямителя) — для повышения КПД обычно применяют двухполупериодную схему со средней точкой (возможен также переход к использованию диодов Шоттки с малым падением напряжения при прямом смещении).

С повышением напряжения разница в КПД схем уменьшается и определяющим фактором становится величина обратного напряжения, прикладываемого к запертым диодам в процессе работы выпрямителя. Поэтому при больших уровнях выходного напряжения обычно используют выпрямитель выполненный по мостовой схеме.

Однофазный полностью управляемый выпрямитель позволяет преобразовывать однофазный AC в DC. Обычно это используется в различных приложениях, таких как зарядка аккумулятора, управление скоростью двигателей постоянного тока и передняя часть ИБП (источник бесперебойного питания) и SMPS (источник питания с переключаемым режимом).

Все четыре используемых устройства — тиристоры. Моменты включения этих устройств зависят от пусковых сигналов. Выключение происходит, когда ток через устройство достигает нуля, и он обратный смещён, по крайней мере, на длительность, равную времени выключения устройства, указанного в листе данных:

  1. В положительных полуциклических тиристорах T1 и T2 стреляют под углом α.
  2. Когда T1 & T2 проводит Vo = Vs IO = is = Vo / R = Vs / R.
  3. В отрицательном полупериоде входного напряжения SC3 T3 и T4 запускаются под углом (π + α).
  4. Здесь выходной ток и ток питания находятся в противоположном направлении. T3 & T4 отключается при 2π.

Если мостовую схему выпрямления использовать совместно с источником, снабженным средней точкой, и средний выход каждой пары диодов соединить со средней точкой входного источника через собственную нагрузку, на выходе выпрямителя получится два равных, но обратных по знаку напряжения (рис. 3.4-10). Такая схема выпрямителя часто используется для питания устройств, построенных с применением операционных усилителей.

 

Трехфазный прибор (схема Ларионова)

Трехфазный мостовой выпрямитель (рис. 2.2, а) можно рассматривать как со­единение двух трехфазных выпрямителей с нулевым выводом, у одного из которых диоды VD1, VD3, VD5 образуют катодную группу, а у другого диоды VD2, VD4, VD6 обра­зуют анодную группу. Трансформаторы у этих выпрямителей совмещены в один. При работе мостовой схемы ток проводят всегда два диода; один в анодной, а другой – в ка­тодной группе.

В любой момент времени в катодной группе будет открыт тот диод, по­тенциал которого по отношению к средней точке трансформатора выше (более поло­жительный) потенциала анода других диодов. В анодной группе проводит тот диод, по­тенциал, которого ниже (более отрицателен) по отношению к потенциалам катодов других диодов.

Например, в момент времени θ = θ1 (рис. 2.2, б) в катодной группе про­водит диод VD1, в анодной – VD6. Переход тока с диода на диод в обоих группах происходит в точках естественной коммутации К1, К2, К3,…, А1, А2, А3 и т.д. Порядок вступления диодов в работу соответствует их номерам.

Будет интересно➡  Что такое шаговое напряжение и чем оно опасно

Таким образом, по отношению к нулевой точке трансформатора потенциал общих катодов из­меряется по верхней огибающей, а потенциал общих анодов – по нижней огибающей кривых фазных напряжений ua, ub, uc.

Мгновенное выпрямленное напряжение ud  мостового выпрямителя равно разности потенциалов катодной и анодной групп и соответствует ординатам, за­ключенным между верхней и нижней огибающими. Пульсации выпрямленного напряжении ud и тока id  a, при активной нагрузке ключ К замкнут происходят с шестикратной частотой по отношению к частоте сети.

Материал по теме: Что такое реле контроля.

Форма выпрямленного тока и тока через диод показана на рис. 2.2, в, г, при ак­тивной нагрузке выпрямителя rв и работе выпрямителя на обмотку возбуждения (см. рис. 2.2 в, штриховая линия). Обратное напряжение имеет форму, как в нулевой схеме, но в два раза меньшей амплитуды. Ток в каждой фазе вторичной обмотки трансформатора протекает дважды за пе­риод в противоположных направлениях. В связи с этим в мостовой схеме отсутствует вынужденное подмагничивание сердечника трансформатора.

Форма первичного тока находится из условия компенсации магнитодвижущих сил (МДС) первичной и вторичной обмоток при соединении первичной обмотки в звезду. Выпрямитель при этом на­гружен на обмотку возбуждения.

Расчетные соотношения для мостовой схемы нахо­дятся из общих формул (2.1 – 2.8), при m = 6. При сравнительном анализе трехфазной нулевой и мостовой схем можно сделать те же выводы, что и для соответствующих однофазных схем.

Улучшение гармонического состава кривых выпрямленного напряжения и сете­вого тока достигается в многофазных схемах выпрямления, используемых для машин большой мощности. На практике широко применяют двенадцатифазные схемы вы­прямления (m = 12), образованные последовательным или параллельным соединением двух мостовых выпрямителей.

Расчет выпрямителей
Расчет выпрямителей

Заключение

Рейтинг автора
Автор статьи
Лагутин Виталий Сергеевич
Инженер по специальности "Программное обеспечение вычислительной техники и автоматизированных систем", МИФИ, 2005–2010 гг.
Написано статей
74

Более подробную информацию о мостовых выпрямителях можно узнать из материала «Выпрямитель мостовой».Если у вас остались вопросы, можно задать их в комментариях на сайте. А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.220v.guru

www.electricalschool.info

www.nauchebe.net

www.club155.ru

www.studme.org

www.electrono.ru

Предыдущая
ТеорияКак устроен однополупериодный выпрямитель и где применяется
Следующая
ТеорияКак устроен трехфазный выпрямитель
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять