Что такое коронный разряд?

Краткая история изучения электричества

Когда человек познакомился с электричеством? Ответить на этот вопрос сложно, поскольку поставлен он некорректным образом, ведь наиболее яркое природное явление – молния, известная с незапамятных времен.

Осмысленное изучение электрических процессов началось лишь с конца первой половины XVIII века. Здесь следует отметить серьезный вклад в представления человека об электричестве Чарльза Кулона, исследовавшего силу взаимодействия заряженных частиц, Георга Ома, математически описавшего параметры тока в замкнутой цепи, и Бенджамина Франклина, который провел множество экспериментов, изучая природу вышеназванной молнии. Помимо них, большую роль в развитии физики электричества сыграли такие ученые, как Луиджи Гальвани (изучение нервных импульсов, изобретение первой «батарейки») и Майкл Фарадей (исследование тока в электролитах)

Достижения всех названных ученых создали прочный фундамент для изучения и понимания сложных электрических процессов, одним из которых является электрический разряд.

Теория ионизации воздуха

Ионизацию воздуха заметили давно, но не сумели правильно истолковать. С появлением в середине XVIII века первых электростатических генераторов разряд стал обычным явлением. Даже успели попробовать на себе жестокое действие лейденской банки. Истинные опыты с электричеством начались после изобретения Вольтой гальванического источника энергии.

Первую в мире дугу получил в 1802 году русский учёный с запоминающейся фамилией Петров. Он предсказал возможность использования сего для целей освещения. Сильную досаду вызывает факт, что весь учёный мир обратил внимание на явление. И оказывалось ясно, куда в действительности течёт электрический ток. Ведь отрицательный угольный электрод заострялся под действием дуги, а на аноде образовывалась небольшая ямка. Учёный мир увидел в этом правоту Бенджамина Франклина: заряды наращивают отрицательный угольный стержень, будучи положительны. И лишь к началу XX века, когда опыты с катодными лучами дали первые результаты, стало понятно, что 100 лет назад совершена большая ошибка.

Что такое коронный разряд?

При горении дуги пять шестых светового потока даёт анод. Его температура в стандартных физических опытах составляет 4000 градусов Цельсия. Это на 1000 больше, нежели у катода, дающего 10% светового потока. Прочее берётся от дуги непосредственно, за счёт мерцания ионизированного газа. При столь высоких температурах начинают плавиться даже керамика и вольфрам. Сварку изобрели гораздо позже, с 80-х годов (XIX века) электрод угольный, позже Н.Г. Славянов предложить использовать металлический.

Опыт Павлова повторил Дэви, прочие дугой пока не занимались. С его подачи началось исследование разряда в среде газа. Обнаружены первые линейчатые спектры. Фарадей и Уитстон в 30-х годах изучали разряд в разреженных газах. Видя усердие англичан, иностранный инженер, принявший российское подданство, Якоби попробовал применить угольный стрежень для освещения улиц Санкт-Петербурга (1846 год). Но анод быстро выгорал, увеличивая искровой промежуток, и лампа гасла. Ситуацию решил Яблочков, это уже случилось через 30 лет, когда век угольных разрядников подходил к концу. Они находили применение в узких областях долгое время, к примеру, при освещении неба в период Второй мировой войны и отражения вражеских налётов.

Катушка Румкорфа (ориентировочно 1846 год) окончательно убедила людей, что высокое напряжение способно создать искру, а Никола Тесла показал, что при помощи экрана Фарадея даже простой смертный сумеет направлять молнии в нужном направлении. Языки пламени в ночном небе над башней Ворденклиф называют самым невероятным коронным разрядом в истории человечества, если не считать устроенного позднее великим изобретателем на крышах Нью-Йорка.

Что такое эффект короны энергосистемы?

Когда переменный ток подается по двум проводникам линии электропередачи, расстояние между проводниками имеет значение. Чем больше это расстояние по сравнению с диаметрами проводников, тем меньше окружающая проводники атмосфера подвергается диэлектрическому напряжению.

При низких значениях конечного напряжения питания ионизация наружного воздуха минимальна или отсутствует совсем.

Однако если разность потенциалов проводников увеличивается и выходит за пределы некоторого порогового значения (обычно в районе 30 кВ), образуется фактор критически разрушающего напряжения.

В этом случае напряженность электрического поля увеличивается, окружающий воздух испытывает напряжение, достаточно высокое, чтобы начался процесс диссоциации на ионы. А такой процесс, в свою очередь, приводит к возникновению проводимости атмосферы.

Ионизированное окружение по причине активного потока ионов сопровождается электрическим разрядом между двумя линиями, который изначально выглядит в виде слабого люминесцентного свечения, сопровождаемого характерным шипящим звуком — результат высвобождения озона.

Будет интересно➡  Эффект Холла и его применение

Практический пример формирования эффекта короны на высоковольтной линии электропередачи по причине значительной напряжённости окружающего воздуха. Также факторами подобного явления могут выступать иные причины

Это явление электрического разряда, возникающего на линии передачи с высоким значением напряжения, носит название — эффект короны энергосистемы.

Продолжение увеличения напряжения на линиях, как правило, сопровождается проявлением более интенсивного свечения и усиления шипящего звучания. При этом энергосистема испытывает значительные потери мощности.

Схема возникновения коронного разряда

Точного определения коронного разряда в литературе не встречается. По простой причине нежелания авторов разбираться с темой и обилием дублирующейся информации, упускающей смысл из содержания. Определение коронного разряда, данное в начале, тоже нельзя назвать физически точным. Корректная трактовка большинством читателей не воспримется из-за наличия специфических особенностей. В физике принято прохождение тока через воздух делить на три участка, видных на графике:

  1. Первый подчиняется закону Ома для участка цепи и прямой. Здесь протекание тока возможно за счёт внешней ионизации: пламенем, ультрафиолетом, радиоактивным или высокочастотным излучением. Первые два фактора уже были известны Вольте (до открытия «животного электричества» Гальвани), предлагавшему снимать статический заряд с резины электрофоруса лучами Солнца или свечой.
  2. Второй участок находится в области насыщения. Учёные говорят, что ток остаётся сравнительно постоянным, заряды при движении между электродами активно рекомбинируют. И при растущей разнице потенциалов ничего не меняется. Пока напряжение не достигнет третьего участка.
  3. При высокой разнице потенциалов начинается лавинообразный процесс ударной ионизации. Электроны обретают столь высокую скорость, что выбивают электроны из молекул газа. На этом участке ток быстро растёт с повышением разницы потенциалов, возможно возникновение электрической дуги.

Что такое коронный разряд?

Разряд, наблюдаемый визуально, называется искровым и возникает после начала второго роста кривой. Вначале присутствует тихий разряд, глазу не заметный. Его часто называют несамостоятельным, нужен внешний ионизирующий фактор, чтобы поддержать движение носителей. Понижение напряжения вызывает немедленную рекомбинацию всех носителей.

Искровой разряд отмечается при напряжениях, где возможна лавинообразная ионизация. Искры проскакивают с частотой от 400 Гц и выше, что сопровождается различимым шумом. Напряжение после каждого разряда падает, чем обусловлено наличие свободного интервала. Визуально искры сливаются в одну. Подвидами указанного типа ионизации считаются родственные разряды:

  • Кистевой разряд похож на ладонь сказочного скелета. Образуется между острием и заряженной поверхностью. Заметно на нейтрализаторах электрофорной машины, изоляторах ЛЭП. Ионизация начинается со стороны острия, в этом месте напряжённость поля увеличена, заряды стекают в пространство, чем порождается лавинообразный процесс.
  • Коронный разряд вспыхивает между несколькими участками одного провода. Вызван ударной ионизацией воздуха. Своеобразные изломанные зубцы подобны молниям. Их причудливую траекторию учёные объясняют тем, что процесс ионизации распространяется по пути наименьшего сопротивления, в силу изотропности газа невозможно предсказать точный путь. Корона порой плавная и бывает положительной или отрицательной.

Коронный разряд ведёт к потере энергии на линии ЛЭП и происходит непрерывно, что различимо на слух как низкочастотный гул и треск. В дождливую погоду сопротивление провода падает, возможно появление языков ионизированного воздуха в виде маленьких молний, идущих вдоль провода или шаров. Коронный разряд используется в фильтрах очистки воздуха (ионизаторах, люстрах Чижевского), улавливая частицы дыма, пыли, заставляя их оседать.

Механизм возникновения коронного разряда

Под воздействием электрического поля определенные молекулы внешней среды вокруг электрода ионизируются, то есть их электроны, ускоряясь, слетают с орбит и продолжают ионизацию других молекул. В результате лавинообразно увеличивающиеся заряженные частицы испускают электромагнитную волну и появляется свечение.

Коронирование принято делить на положительное и отрицательное. В возникающей на анодах положительной короне электрод притягивает отрицательно заряженные электроны и отталкивает ионы с плюсовым зарядом. При таком типе коронного разряда непосредственно около проводника наблюдается интенсивное свечение, слабеющее по мере отдаления от острия. Неравномерность фотопроцессов ведет к появлению разветвленных световых каналов (стримеров), внутри которых содержатся ионы и отделенные от них электроны.

Однородность плазмы, в форме которой появляется анодный коронный разряд, объясняется однородностью источника вторичных лавинных электронов. Так как внутренняя и внешняя области положительной короны не разделены прослойкой неионизрованной плазмы, свечение выглядит меньше, чем отрицательное коронированиие при таком же напряжении.

В том случае, когда коронирование возникает на отрицательно заряженном проводнике, масса электронов отталкивается от электрода. Вблизи него при слабом электрическом поле, которое бывает недостаточным для лавинной ионизации, образуются ионы с отрицательным зарядом — во внешней области от короны именно они являются носителями электрического тока. При этом высвобождение электронов происходит непосредственно из катода (так называемая термоэлектронная эмиссия).

Будет интересно➡  Что такое электрон?

При отрицательном коронировании свечение распределяется равномерно. Его форма определяется изогнутостью самого электрода, а также источником лавинной ионизации. Подобное коронирование проявляется пучками, число которых находится в зависимости от силы электрического поля.

Применение

Коронный разряд находит широкое применение в химической промышленности, приборостроении, производстве оргтехники и других отраслях. Так, например, коронирование задействовано в электростатических фильтрах, где электрический разряд способствует очистке газовой среды от примесей дыма и копоти.

При коронном разряде и ионизации газа внутри электрофильтра инородные частицы, будучи захваченными ионами, оседают на электродах — металлических пластинах. В принтерах и копировальных аппаратах коронный разряд переносит красящий элемент с порошком-носителем с фотобарабана на бумагу.

Коронирование также позволяет определить мощность потока элементарных частиц из отдельного источника. Принцип газового разряда применен в счетчике Гейгера. Быстро движущиеся электроны, попадая в прибор при большом напряжении, вызывают ударную ионизацию газа, поддерживающую самостоятельный разряд с последующим повышением силы тока. Изменение мощности коронного разряда также служит показателем уровня давления в лампах накаливания.

Виды газовых разрядов

Искровой разряд – это прерывистый самостоятельный лавинообразный разряд в газе, вызванный ударной ионизацией и сопровождающийся треском и ярким свечением. Искровой разряд возникает при условии, когда мощность источника недостаточна для поддержания непрерывного разряда.

Дуговой разряд впервые был получен в 1802 году российским академиком В. В. Петровым. При соприкосновении электродов в цепи возникает сильный ток короткого замыкания, что приводит к сильному нагреванию электродов. Затем электроды постепенно раздвигаются. Ток продолжает идти через межэлектродное пространство, заполненное высокотемпературной плазмой. Концы электродов раскаляются до 3000-4000 градусов и начинают испаряться.

Дуговой разряд является самостоятельным разрядом в газе и происходит за счет энергии термоэлектронной эмиссии с катода. Является источником сильного светового и ультрафиолетового излучения.

Тлеющий разряд возникает в разряженном газе при сравнительно невысоком напряжении в виде светящегося газового столба. Тлеющий разряд вызывается ударной ионизацией и выбиванием электронов из катода положительными ионами (вторичная ионизация).

Свечение при тлеющем разряде объясняется тем, что при рекомбинации молекул газа высвобождается энергия в виде светового излучения. Свечение будет иметь разные цвета в зависимости от вида газа.

Коронный разряд возникает в сильно неоднородных электрических полях. Например, вблизи острия напряженность электрического поля настолько велика, что ионизация электронным ударом возможна даже при атмосферном давлении. В этой области возникает характерное сферическое свечение в виде короны.

Формы коронного разряда

Коронный разряд — это характерная форма самостоятельного газового разряда, возникающего в резко неоднородных полях. Главной особенностью этого разряда является то, что ионизационные процессы электронами происходят не по всей длине промежутка, а только в небольшой его части вблизи электрода с малым радиусом кривизны (так называемого коронирующего электрода). Эта зона характеризуется значительно более высокими значениями напряженности поля по сравнению со средними значениями для всего промежутка. Само название «коронный» разряд получил из-за своего свечения, наблюдаемого на тонких проводах и напоминающего солнечную корону.

Основными формами коронного разряда являются лавинная и стримерная. Названия этих форм обусловлены основными характерными процессами, имеющими место в зоне ионизации соответствующих коронных разрядов. Визуально лавинная корона наблюдается в виде относительно тонкого светящегося слоя на гладких электродах и в виде дискретных светящихся пятен на негладких (шероховатых) электродах. Стримерная корона наблюдается в виде слабо светящихся нитевидных каналов, длина которых в зависимости от конкретных условий может изменяться в широких пределах (от нескольких миллиметров до нескольких сантиметров).

Часть промежутка, где происходят ионизационные процессы, называется чехлом коронного разряда, а оставшаяся часть промежутка, где происходит дрейф заряженных частиц, является зоной дрейфа. Если в зоне дрейфа существуют заряды только одного знака, то корону называют униполярной, а если заряды обоих знаков, то биполярной. Биполярная корона постоянного тока возникает тогда, когда имеется промежуток с двумя коронирующими электродами (например, промежуток провод-провод или игла-игла), к которому приложено постоянное напряжение. Униполярная корона существует там, где имеется промежуток только с одним коронирующим электродом или с несколькими коронирующими электродами с одинаковой полярностью питающего напряжения.

Будет интересно➡  Как построить векторную диаграмму токов и напряжений

Процессы в чехле и в зоне дрейфа биполярной короны намного более сложны, чем в униполярной короне, т.к. появляется дополнительный механизм ионной рекомбинации в объеме промежутка и дополнительные механизмы вторичных процессов на электродах, что существенно усложняет математическое описание и моделирование этого вида разряда.

Лавинная форма коронного разряда может реализовываться в виде непрерывной и вспышечной короны. Вспышечный характер короны связан с тем, что подвижность электронов и ионов различается на три порядка. В результате при положительной полярности коронирующего электрода электроны быстро уходят на анод, а положительные ионы, дрейфуя от анода, оказываются в области слабого поля и не могут из-за низкой подвижности быстро уйти от анода. Поэтому напряженность поля у анода снижается и ионизация практически прекращается. Следующая лавинная вспышка может возникнуть только после того, как положительные ионы покинут зону ионизации. При положительной полярности коронирующего электрода вспышечная корона возникает как в электроотрицательных, так и в электроположительных газах.

При отрицательной полярности питающего напряжения вспышечный характер разряда возникает только в электроотрицательных газах, где электроны попадая в область слабого поля, прилипают к молекулам образуя мало подвижные ионы, а те в свою очередь снижают напряженность поля в зоне ионизации. Эти вспышечные импульсы получили название импульсов Тричела.

Коронный разряд на проводах ЛЭП

Коронный разряд на проводах линий электропередачи вызывает значительные потери передаваемой энергии. С целью сокращения потерь на общую корону применяется расщепление проводов ЛЭП на несколько составляющих, в зависимости от номинального напряжения линии.

«Системный» способ уменьшения потерь мощности на корону заключается в том, что в зависимости от влажности и температуры воздуха диспетчер уменьшает напряжение в линии до определенной величины. В связи с этим задаются наименьшие допустимые сечения по короне:

  • 110 кВ — 70 мм² (сейчас рекомендуется использовать сечение 95 мм²).
  • 150 кВ — 120 мм².
  • 220 кВ — 240 мм².

Особенности коронного разряда

Коронный разряд обычно возникает в месте с наименьшим радиусом кривизны. Если это линия, максимальная вероятность образования проявляется на механическом дефекте. Область наиболее частого возникновения заряда называется коронирующей, либо коронирующим электродом. Проводник – под положительным или отрицательным потенциалом. Соответственно, различают и короны аналогичного рода (см. выше).

Положительный и отрицательный разряд отличаются внешним видом. В первом случае свечение равномерное, во втором имеются эпицентры по поверхности провода. Механизм процесса меж электродами:

  1. В начале возникает несамостоятельный разряд. Это происходит за счёт случайного действия: капли дождя, порыв ветра и пр.
  2. Если разница потенциалов продолжит расти, образуется слабое свечение в районе провода, сопровождаемое еле слышным потрескиванием. Вызывающее напряжение называется критическим, либо начальным.
  3. При дальнейшем росте разницы потенциалов (напряжение искрового пробоя) ток растёт по квадратичному закону, свечение становится сильнее. Начинают проскакивать искры со всевозрастающей частотой.
  4. Тотальное увеличение разницы потенциалов вызывает дуговой разряд, проявляющийся как короткое замыкание цепи. Его горение сложно остановить.

Итак, коронный разряд в лабораторной установке является предшественником искрового, а искровой – дугового. На практике при номинальном напряжении сети электрики не слишком беспокоятся о защите. Возможно повысить вольтаж на 10% без особого ущерба, если в указанной местности не бывает частой непогоды, преимущественно песчаных бурь.

Если расстояние между электродами слишком мало, коронный разряд не образуется: после несамостоятельного немедленно идёт искровой. Провода в ЛЭП стараются разнести на дистанцию, применяют керамические изоляторы. Коронный разряд часто заменяется кистевым, если присутствует ярко выраженное острие. Оба лишь формальное обозначение идентичного явления.

Оцените статью:Похожие статьи0112 Магнитное поле в веществе. часть 1 Явление взаимодействия двух магнитов. Явление магнитного поля, которое мы можем встретить в повседневной жизни, получило название взаимодействие двух магнитов. Оно выражается в отталкивании друг от друга… Дополнительно 0133Контактная разность потенциалов
Контактная разность потенциалов Потенциальность электростатического поля Электрическое поле с напряженностью ​( vec{E} )​ при перемещении заряда ​( q )​ совершает работу. Работа ​( A )​ электростатического поля вычисляется по… Дополнительно 0905

Энергопотенциалы в электрическом поле
Разность потенциалов Важнейшим понятием, используемым в электрике, радиотехнике и в любой другой сфере, связанной с электричеством, выступает разность потенциалов между точками, или более привычное название – электрическое

Предыдущая
ТеорияЭффект Холла и его применение
Следующая
ТеорияПонятие фидера в электрике и его роль в электроэнергетике
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять