Электрическое сопротивление: определение и формулы расчета

Что такое электрическое сопротивление

Электрическое сопротивление – величина электротехническая, характеризующая степень препятствования свободному протеканию электронов по проводнику. Некоторые материалы могут иметь нулевое сопротивление, а некоторые наоборот, имеют высокое, такие материалы называются диэлектриками. Есть другая противоположность – сверхпроводники.

Измеряется сопротивление в Омах, в честь своего первооткрывателя. Есть производные единицы – килоОмы, мегаОмы и даже гигаОмы. Проводимость – величина обратная сопротивлению. В данной статье рассказано все о таком физическом явлении, как сопротивление, как его измерять и рассчитать. В качестве дополнения, материал содержит два ролика и один скачиваемый файл.

Что такое сопротивление проводника
Что такое сопротивление проводника.

Электрическое сопротивление проводников

 Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Электронная теория так объясняет сущность электрического сопротивления металлических проводников.

Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении. Сопротивление обозначается латинскими буквами R или r. За единицу электрического сопротивления принят ом.

Удельное сопротивление проволоки
Удельное сопротивление проволоки.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм2 при температуре 0° С. Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4ом. Для измерения сопротивлений большой величины принята единица, называемая мегомом. Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник. Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью.

Материал в тему: как определить мощность тока.

Физический принцип сопротивления

Проще всего объяснить это по аналогии с водопроводной трубой. Представьте себе, что вода — некое подобие электрического тока, образуемого направленным движением электронов в проводнике, а напряжение — аналог давления (напора) воды. Сопротивление — это та сила противодействия среды их движению, которую электронам или воде приходится преодолевать, в результате чего производится работа и выделяется теплота. Именно такая модель представлялась в 1820-е годы Георгу Ому, когда он занялся исследованием природы происходящего в электрических цепях.

В водопроводной трубе всё обстоит так, что чем выше давление воды, тем относительно большая доля энергии расходуется на преодоление сопротивления в трубах, поскольку в них усиливается турбулентность потока. Из этого исходил Ом, приступая к опытам по измерению зависимости силы тока от напряжения. И очень скоро выяснилось, что ничего подобного в электрических проводниках не происходит: сопротивление вещества электрическому току вовсе не зависит от приложенного напряжения. В этом, по сути, и заключается закон Ома, который (для отдельного участка цепи) записывается очень просто:

Будет интересно➡  Что такое резонанс, в чем его польза и опасность

V = IR

где V — напряжение, приложенное к участку цепи, I — сила тока, а R — электрическое сопротивление участка цепи.

Сопротивление в проводнике
Сопротивление в проводнике

Сегодня мы понимаем, что электрическая проводимость обусловлена движением свободных электронов, а сопротивление — столкновением этих электронов с атомами кристаллической решетки. При каждом таком столкновении часть энергии свободного электрона передается атому, который, в результате, начинает колебаться более интенсивно, и в результате мы наблюдаем нагревание проводника под действием электрического тока. Повышение напряжения в цепи никак не сказывается на доле тепловых потерь такого рода, и соотношение напряжения и электрического тока остается постоянным.

Однако, когда Георг Ом экспериментально открыл свой закон, атомная теория строения вещества находилась в зачаточном состоянии, а до открытия электрона оставалось несколько десятилетий. Таким образом, для него формула V = IR была чисто экспериментальным результатом. Сегодня мы имеем достаточно стройную и, одновременно, сложную теорию электропроводности и понимаем, что закон Ома в его первозданном виде — всего лишь грубое приближение.

Однако это не мешает нам с успехом использовать его для расчета самых сложных электрических цепей, использующихся в промышленности и быту. Единица электрического сопротивления системы СИ называется Ом в честь этого выдающегося ученого.

Роль проводника тока

Если к веществу или материалу обладающему проводящей способностью, подключить источник ЭДС, то по нему начинает протекать электрический ток. Свободные электроны вещества при этом начинают направленное движение от отрицательного полюса к положительному, т.к они являются носителями отрицательного заряда.

Во время направленного движения электроны ударяются об атомы материала и передают им некоторую часть своей энергии, из-за этого происходит нагрев проводника по которому проходит ток. А электроны после столкновения замедляют свое движение. Но электрическое поле их опять ускоряет, поэтому они продолжают свое направленное движение к плюсу.

Этот процесс может идти практически бесконечно, пока вокруг проводника имеется электрическое поле созданное источником электродвижущей силы. Получается, что чем больше препятствий попадется на пути следования электронов, тем выше значение сопротивления.

В различных веществах имеется разное количество свободных электронов, а атомы, между которыми свободные носители заряда перемещаются, обладают различным местом расположения. Поэтому сопр. проводников току зависит, в первую очередь от материала, из которого они сделаны, от площади и длины поперечного сечения.

Если сравнить два проводника сделанные из одинакового материала, то более длинный имеет большее R при равных площадях поперечных сечений, а с большим поперечным сечением имеет более низкое сопр. при равных длинах. Рассмотрим практический пример: Подключим лампочку накаливания на 60Вт в розетку с сетевым напряжением. Спираль лампочки начинает создавать потоку электронов с потенциалом в 220В некоторое препятствие.

Если эта преграда на пути электронов окажется слишком маленькой лампочка перегорит. Если слишком большое – накальная нить будет гореть очень слабо. А вот если оно будет “оптимальное, тогда лампочка будет гореть нормально, выделяя при этом и тепло. Вырабатываемое тепло называют “потерянной” энергией, так как часть энергию затрагивается на никому ненужный нагрев.

Что такое электрическое удельное сопротивление? Из формулы закона Ома можно записать, что электрическое сопротивление является физической величиной, которую можно вычислить как отношение напряжения в проводнике к силе протекающего в нем тока.

Интересно почитать! Что такое варистор и где его применяют.

Итак, исходя из опыта с лампочкой чуть выше можно сделать вывод, что электрическое сопротивление проводника является физической величиной, которая указывает на свойство вещества преобразовывать электрическую энергию в тепловую. (R= ρ × l)/S ρ — удельное сопротивление материала проводника, Ом·м, l — длина, м, и S — площадь сечения, м2. Удельное электрическое сопротивление является также физической величиной, которая равна сопротивлению метрового проводника с площадью сечения в один метр квадратный. На практике, сечение измеряют в квадратных миллиметрах.

Сопротивление различных металлов
Сопротивление различных металлов

Поэтому и удельное электрическое сопротивление проще считать в Ом × мм2 / м, а площадь подставлять в мм2. Формула выше говорит о том, что удельное сопр. прямо пропорционально удельному сопр. материала, из которого он сделан, а также его длине и обратно пропорционально площади поперечного сечения проводника.

Будет интересно➡  Что такое индуктивность

Сопр. проводников зависит также от температуры. Так у элементов из металла с повышением температуры R увеличивается. Зависимость эта сложная, но в относительно узких пределах температурного изменения (примерно до 200° Цельсия) можно условно считать, что для каждого металла существует определенный, так называемый температурный, коэффициент сопротивления (альфа), который выражает определенный прирост сопротивления дельта r при изменении температуры на один градус цельсия, отнесенный к 1 ом начального значения сопротивления. Таким образом, температурный коэффициент удельного сопротивления будет равен α = r2-r1/r1(T2-T1) и прирост сопр. будет равен Δr=r2-r1=αr2(T2-T1)

Например, у медного линейного провода при температуре T1 = 15° r1 = 50 ом, а при температуре T2 = 75° — r2 — 62 ом. Поэтому, дельта при изменении температуры на 75 — 15 = 60° будет равно 62 — 50 = 12 ом. Т.е, дельта, соответствующий изменению температуры на 1°, равен: 12/60=0,2 От чего зависит удельное сопротивление.

Что такое электрическое сопротивление

Во-первых, от материала проводника. Чем больше значение ρ, тем хуже будет пропускная токовая способность. Во-вторых, от длины провода – с увеличением длины сопротивление увеличивается. В-третьих, от толщины. У более толстого проводника, более низкое сопротивление. И в-четвертых, от температуры проводника.

Если он из металла, то их удельное сопротивление возрастает с ростом температуры. В исключение можно поместить специальные сплавы – их электрическое удельное сопр. практически не изменяется при нагревании. Например: никелин, константан и манганин. А вот у жидкостей с нагревом, удельное сопротивление уменьшается.

Связь с удельной проводимостью в изотропных материалах, выражется формулой: ρ = 1 / σ Где σ – удельная проводимость. Явление сверхпроводимости Предположим температуру материала будем уменьшать, то удельное сопротивление при этом будет также снижаться. Есть предел, до которого можно снизить температуру – абсолютный нуль.

Проводник в разрезе
Проводник в разрезе

В численном выражении равен —273°С. Ниже этого значения температур просто не существует. При этом значении удельное сопротивление любого проводника будет равно нулю. так как при абсолютном нуле атомы кристаллической решетки полностью перестают колебаться. В результате электронное облако проходит между узлами решетки, не соударяясь с ними. Удельное сопр. материала становится равным нулю, что открывает возможности для получения бесконечно огромных токовых уровней в проводниках малого сечения. Явление сверхпроводимости открывает фантастические перспективы для развития электротехники и электронной техники. Но пока еще имеются некоторые сложности, связанные с получением в быту сверхмалых температурных значений, требуемых для создания нужного эффекта. Когда эти проблемы смогут преодалеть, электротехника шагнет на принципиально новый уровень развития.

Будет интересно➡  Чему равна электроемкость конденсатора?

Зависимость сопротивления от температуры

Электропроводность всех материалов зависит от их температуры. В металлических проводниках при нагревании размах и скорость колебаний атомов в кристаллической решетке металла увеличиваются, вследствие чего возрастает и сопротивление, которое они оказывают потоку электро­нов. При охлаждении происходит обратное явление: беспорядоч­ное колебательное движение атомов в узлах кристаллической решетки уменьшается, сопротивление их потоку электронов пони­жается и электропроводность проводника возрастает.

В природе, однако, имеются некоторые сплавы: фехраль, константан, манганин и др., у которых в определенном интервале температур электрическое сопротивление меняется сравнительно мало. Подобные сплавы применяют в технике для изготовления различных резисторов, используемых в электроизмерительных при­борах и некоторых аппаратах для компенсации влияния темпера­туры на их работу.

О степени изменения сопротивления проводников при измене­нии температуры судят по так называемому температурному ко­эффициенту сопротивления а. Этот коэффициент представляет собой относительное приращение сопротивления проводника при увеличении его температуры на 1 °С. В табл. 1 приведены значения температурного коэффициента сопротивления для наиболее приме­няемых проводниковых материалов.

Сопротивление металлического проводника Rt при любой тем­пературе t

Rt = R [ 1 + ? (t — t) ] (6)

где R— сопротивление проводника при некоторой начальной температуре t (обычно при + 20 °С), которое может быть подсчитано по формуле (5);

t— t — изменение температуры.

Свойство металлических проводников увеличивать свое сопро­тивление при нагревании часто используют в современной технике для измерения температуры. Например, при испытаниях тяговых двигателей после ремонта температуру нагрева их обмоток определяют измерением их сопротивления в холодном состоянии и после работы под нагрузкой в течение установленного периода (обычно в течение 1 ч).

Резисторы
Резисторы

Исследуя свойства металлов при глубоком (очень сильном) охлаждении, ученые обнаружили замечательное явление: вблизи абсолютного нуля (— 273,16 °С) некоторые металлы почти пол­ностью утрачивают электрическое сопротивление. Они становятся идеальными проводниками, способными длительное время пропус­кать ток по замкнутой цепи без всякого воздействия источника электрической энергии.

Это явление названо сверхпроводимостью. В настоящее время созданы опытные образцы линий электропере­дачи и электрических машин, в которых используется явление сверхпроводимости. Такие машины имеют значительно меньшие мас­су и габаритные размеры по сравнению с машинами общего назна­чения и работают с очень высоким коэффициентом полезного дей­ствия.

Линии электропередачи в этом случае можно выполнить из проводов с очень малой площадью поперечного сечения. В пер­спективе в электротехнике будет все больше и больше использо­ваться это явление.

Заключение

Рейтинг автора
Автор статьи
Лагутин Виталий Сергеевич
Инженер по специальности "Программное обеспечение вычислительной техники и автоматизированных систем", МИФИ, 2005–2010 гг.
Написано статей
74

Более подробно о том, что такое электрическое сопротивление, рассказано в материале Измерение удельного электросопротивленияЕсли у вас остались вопросы, можно задать их в комментариях на сайте. А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.pue8.ru

www.electricalschool.info

www.texnic.ru

www.electrono.ru

www.ieport.ru

www.zamzamstore.ru

www.elementy.ru

Предыдущая
ТеорияЧто такое шаговое напряжение и чем оно опасно
Следующая
ТеорияЧто такое статическое электричество и как от него избавиться
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять