Цифро аналоговый преобразователь: микросхемы и выбор ЦАП

Как выбрать цифро-аналоговый преобразователь (ЦАП)

Цифро-аналоговый преобразователь устройство, осуществляющее дискретизацию, а также квантование входного сигнала в аналоговом виде в цифровой на выходе из устройства. Существуют различные схемы устройства данного прибора, зависящие от мощности сигналов, его видов и других технических особенностей. Такой преобразователь является мостом, соединяющий две части схемы аналоговую и цифровую.

Сфера применения этих приборов очень обширная. Они применяются в усилителях звука, устройствах для обработки видео-аудио, калибровки различных датчиков, радиоаппаратуре, системах распределения разных видов данных. В данной статье будут приведены основные схемы устройства преобразователей, где они используются и для чего они необходимы, добавлена пара полезных видеороликов по теме, а также вниманию читателю предложен интересный материал для скачивания.

Схема цифро-аналогового преобразователя.
Схема цифро-аналогового преобразователя.

Как устроен ЦАП

ЦАП подразделяются на электрические и механические. В электрических ЦАП выходными сигналами являются ток, напряжение, временной интервал, а в механических — линейное и угловое перемещения, скорость и т.д. Широкое применение ЦАП нашли:

  • в системах цифровой связи, системах телеизмерений (модемы, кодеки, активные и цифровые фильтры), системах распределения аналоговых сигналов;
  • в системах управления технологическими процессами (станки с числовым программным управлением, прецизионная электротермообработка, электронно-лучевая фотолитография и др.);
  • в испытательной и измерительной технике (программируемые источники питания, цифровые измерительные приборы и др.).

Цифровая информация представляется соответствующим кодом. Наиболее распространен двоичный цифровой код. Значения разрядов в таком коде определяются присутствием или отсутствием электрического напряжения или напряжениями высокого или низкого уровня. Цифровой код может быть последовательным, когда уровни напряжения, соответствующие отдельным разрядам кода, поступают в различные моменты времени и могут быть переданы по одной линии.

Интересно почитать: Как включить блок питания без компьютера.

При параллельном кодировании все уровни напряжения, соответствующие разрядам кода, поступают одновременно и передаются по отдельным линиям. Цифровой код представляется в виде последовательности единиц и нулей, например: 1101. В данном коде записано 4 цифры, которые называют разрядами. Крайний левый разряд называют старшим разрядом (СР), крайний правый — младшим разрядом (МР). Числовой эквивалент может быть определен, если известна система кодирования или тип кода. В ЦАП наибольшее распространение получили двоичные и двоично-десятичные коды с весами разрядов 8-4-2-1 или 2-4-2-1.

Что такое фоторезистор.
Читать далее
Маркировка SMD транзисторов.
Читать далее
Как сделать датчик движения своими руками.
Читать далее

Коды бывают прямыми и обратными. Обратные коды получаются инвертированием всех разрядов прямого кода. Максимальное число разрядов, которые могут быть поданы на вход ЦАП и преобразованы в выходную величину, определяется конкретной интегральной схемой. Число разрядов — это двоичный логарифм максимального числа кодовых комбинаций на входе ЦАП. Число разрядов является наиболее общей характеристикой, определяющей номинальные функциональные возможности ИМС.

Современный цифро-аналоговый преобразователь.
Современный цифро-аналоговый преобразователь.

По способу формирования выходного напряжения в зависимости от цифрового входного кода все ЦАП можно разделить на три группы: с суммированием токов, с суммированием напряжений, с делением напряжений. При реализации ЦАП в виде БИС наибольшее распространение получила схема с суммированием токов. ЦАП с суммированием и делением напряжений менее технологичны, но до сих пор реализуются в аппаратуре на цифровых и аналоговых микросхемах.

ЦАП, использующие для формирования выходного напряжения суммирование токов, делятся на два типа: с использованием взвешенных резисторов и с использованием многозвенной цепочки резисторов R-2R. Принцип действия ЦАП основывается на том, что любое двоичное число Xn_iXn_2.. 2ХгХ можно представить в виде суммы степеней числа 2. Поэтому для преобразования двоичных чисел в аналоговую величину (напряжение, ток и т.д.) необходимо каждой единице числа поставить в соответствие аналоговую величину со своим весом, соответствующим разряду данной цифры, а затем произвести суммирование этих величин.

Схема ЦАП

Схема четырехразрядного ЦАП на основе двоично-взвешенных резисторов состоит из матрицы двоично-взвешенных резисторов, переключателей на каждый разряд, которые управляются цифровыми сигналами, входного (опорного) напряжения и суммирующего усилителя, собранного на базе ОУ в инверсном включении. Сопротивления резисторов, соответствующих разрядам входного слова, отличаются в два раза при переходе к соседнему биту. На цифровые входы ЦАП подается двоичный ЛГ-разрядный сигнал.

Каждый i-й цифровой сигнал управляет г-м переключателем, обеспечивая подключение любого резистора с сопротивлением R ? 21 либо к общей шине, либо к источнику входного напряжения. Для простоты рассмотрения принимается, что сопротивление переключателей и внутреннее сопротивление источника входного сигнала равно нулю.

Четырехразрядного цифро-аналоговый преобразователь.
Четырехразрядного цифро-аналоговый преобразователь.

Типы ЦАП (цифро аналоговый преобразователь)

Наиболее общие типы электронных ЦАП:

  • широтно-импульсный модулятор— простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром низких частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi (класс аппаратуры) аудиотехнике;
  • ЦАП передискретизации, такие как дельта-сигма ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра высоких частот для шума квантования. Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность — до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот и улучшается подавление шума квантования;
  • взвешивающий ЦАП, в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов. По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;
  • цепная R-2R схемаявляется вариацией взвешивающего ЦАП. В R-2R ЦАП взвешенные значения создаются в специальной схеме, состоящей из резисторов с сопротивлениями R и 2R. Это позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. Недостатком метода является более низкая скорость вследствие паразитной емкости;
  • сегментный ЦАПсодержит по одному источнику тока или резистору на каждое возможное значение выходного сигнала. Так, например, восьмибитный ЦАП этого типа содержит 255 сегментов, а 16-битный — 65535. Теоретически, сегментные ЦАП имеют самое высокое быстродействие, так как для преобразования достаточно замкнуть один ключ, соответствующий входному коду;
  • гибридные ЦАПиспользуют комбинацию перечисленных выше способов. Большинство микросхем ЦАП относится к этому типу; выбор конкретного набора способов является компромиссом между быстродействием, точностью и стоимостью ЦАП.
Схема цифро-аналогового преобразователя.
Схема цифро-аналогового преобразователя.

Основные технические характеристики ЦАП

Наиболее важные характеристики ЦАП:

  • Разрядность, шаг квантования (разрешающая способность) и точность преобразования.
  • Передаточная характеристика (ПХ) — зависимость выходного сигнала ЦАП от входных данных.
  • Разрядность (N) — количество бит во входном коде.
  • Разрешение — это выходное напряжение, соответствующее 1 МЗР. Оно зависит от количества разрядов и определяет точность преобразования сигнала.
  • Частота дискретизации (частота Найквиста) — максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Котельникова, для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не меньше удвоенной максимальной частоты в спектре сигнала.
  • Полная шкала — диапазон значений выходного сигнала.
  • Монотонность — участок на ПХ, где наклон постоянен. На этом участке ЦАП линеен.
  • Время установления — интервал времени от момента изменения входного кода до окончательного вхождения выходного сигнала в заданный диапазон отклонения.
  • Выходной выброс — это переходный процесс, возникающий во время смены входных данных. Величина выброса зависит от количества переключаемых разрядов.
  • Погрешность смещения нуля — разность между фактическим и идеальным выходным сигналом, когда на входе ноль.
  • Погрешность ПШ — разница между фактическим выходным напряжением и напряжением ПШ.
  • Погрешность усиления — отклонение наклона ПХ от идеального.
  • Дифференциальная нелинейность — разность приращений выходных сигналов, соответствующих смежным соседним кодам.
  • Интегральная нелинейность — максимальное отклонение реальной ПХ от прямой линии.
Будет интересно➡  Что такое преобразователь напряжения

При выборе устройства, именно на эти параметры необходимо обращать большее внимание.

Последовательные ЦАП

В последовательных ЦАП входной код преобразуется в аналоговый сигнал поразрядно. При этом для преобразования всех разрядов используется одна и та же схема, что значительно упрощает устройство, однако скорость преобразования в таких обратно пропорциональна разрядности. Не стоит путать способ преобразования и входной интерфейс устройства: на вход последовательного ЦАП входной код может подаваться как последовательно, так и параллельно. К последовательным ЦАП можно отнести следующие виды:

  • Широтно-импульсный модулятор— простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот. Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi-аудиотехнике;
  • Циклический ЦАП (cyclic DAC);
  • Конвейерный ЦАП (pipeline DAC);
  • ЦАП передискретизации, такие, как дельта-сигма-ЦАП, основаны на изменяемой плотности импульсов. Передискретизацияпозволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи. Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования.

Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчётов в секунду, разрядность — до 24 бит.

Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот, и улучшается подавление шума квантования.

Параллельные ЦАП

Архитектура ЦАП – это способ формирования выходного сигнала на функциональном уровне. Иначе говоря, это описание того, на сумму из каких чисел будет раскладываться значение выходного сигнала. Выходной сигнал формируется с помощью взвешивающих элементов, каждый из которых отвечает за свою “порцию” выходного аналогового сигнала. Различают следующие архитектуры по набору значений взвешивающих элементов:

  • Бинарная архитектура. Соотношение двух соседних взвешивающих элементов равно 2. То есть выходной сигнал формируется так же, как это происходит в двоичной системе счисления. Соответственно, веса элементов, формирующих выходной сигнал, в нормированном виде, будут равны 1, 2, 4, 8, 16 и т. д. Управление взвешивающими элементами осуществляется бинарным кодом.
  • Унарная архитектура. Соотношение двух соседних взвешивающих элементов равно 1. То есть выходной сигнал формируется так же, как это происходит в унарной системе счисления. Соответственно, веса всех элементов, в нормированном виде, равны 1. Управление осуществляется унарным или унитарным кодом.
  • Архитектура Фибоначчи. Веса элементов представляют собой последовательность чисел Фибоначчи. Выходной сигнал формируется так же, как это происходит в Фибоначчиевой системе счисления.
Будет интересно➡  Что такое преобразователь напряжения

Кроме того, существует понятие сегментной архитектуры, которая предполагает разделение входного кода на несколько групп. Как правило, две. Каждая группа обрабатывается независимо своим сегментом. Выходные сигналы всех сегментов комбинируются, образуя выходной сигнал ЦАП. Наиболее часто встречается следующая конфигурация сегментной архитектуры: младшие разряды обрабатываются сегментом, построенном по бинарной архитектуре, старшие разряды – сегментом, построенном по унарной архитектуре.

Использование цифро-аналогового преобразователя.
Использование цифро-аналогового преобразователя.

Как выбрать цифро аналоговый преобразователь

ЦАПы бывают разных форм и размеров, отличаются по функциональным и интерфейсным возможностям. Так что вам нужно в первую очередь понять, как вы будете его использовать. И выбрать с учетом стоимости, в которую хотите уложиться. Компактные ЦАП для порта USB отличаются портативностью при разумной цене, они удобны в использовании. Размер варьируется от стандартного, вставляемого в порт USB модуля до блока карманного размера, который подключается через отдельный кабель USB.

Чаще всего, такие ЦАПы не требуют отдельного источника питания, получая необходимую электроэнергию от порта USB. Такие ЦАПы имеют, в значительной степени, простой набор интерфейсов. Есть гнездо для наушников и, возможно, будет линейный выход для подключения активных акустических систем или другой аудиотехники класса Hi-Fi.

Интересно почитать: Как настроить чувствительность микрофона с помощью компьютера.

Если вам нужно больше вариантов подключения и нет необходимости в носимом преобразователе, следует выбрать настольный блок. Они, как правило, больше по размеру и требуют отдельный источник питания, но часто предлагают несколько дополнительных цифровых и аналоговых аудио входов, наряду с USB для подключения к компьютеру. Обратите внимание на наличие усилителя для наушников, если он вам необходим, так как не все преобразователи имеют его.

Наконец, есть ЦАПы, которые специально разработаны для использования в составе большой домашней аудиосистемы. Они, как правило, имеют еще больше входов, включая такие малоиспользуемые, как AES / EBU, и отличаются расширенным набором возможностей, поддерживают весь спектр музыкальных форматов высокого разрешения или обеспечивают соединение через Bluetooth для передачи музыки в потоковом виде с вашего смартфона или планшета. А некоторые даже имеют собственный регулятор громкости, поэтому они могут быть использованы также и в качестве предварительного усилителя.

Как работает современный ЦАП.
Как работает современный ЦАП.

Способы реализации ЦАП с взвешенным суммированием токов

Рассмотрим построение простейшего ЦАП с взвешенным суммированием токов. Этот ЦАП состоит из набора резисторов и набора ключей. Число ключей и число резисторов равно количеству разрядов n входного кода. Номиналы резисторов выбираются в соответствии с двоичным законом. Если R=3 Ом, то 2R= 6 Ом , 4R=12 Ом, и так и далее, т.е. каждый последующий резистор больше предыдущего в 2 раза. При присоединении источника напряжения и замыкании ключей, через каждый резистор потечет ток. Значения токов по резисторам, благодаря соответствующему выбору их номиналов, тоже будут распределены по двоичному закону. При подаче входного кода Nвх включение ключей производится в соответствии со значением соответствующих им разрядов входного кода.

Будет интересно➡  Зачем нужен преобразователь частоты

Ключ замыкается, если соответствующий ему разряд равен единице. При этом в узле суммируются токи, пропорциональные весам этих разрядов и величина вытекающего из узла тока в целом будет пропорциональна значению входного кода Nвх. Сопротивление резисторов матрицы выбирают достаточно большое (десятки кОм). Поэтому для большинства практических случаев для нагрузки ЦАП играет роль источника тока. Если на выходе преобразователя необходимо получить напряжение, то на выходе такого ЦАП устанавливается преобразователь “ток-напряжение”, например, на операционном усилителе.

Плата ЦАП.
Плата ЦАП.

Однако при смене кода на входах ЦАП меняется величина тока, отбираемая от источника опорного напряжения. Это является главным недостатком такого способа построения ЦАП. Такой метод построения можно использовать только в том случае, если источник опорного напряжения будет с низким внутренним сопротивлением. В другом случае в момент смены входного кода изменяется ток, отбираемый у источника, что  приводит к изменению падения напряжения на его внутреннем сопротивлении и, в свою очередь, к дополнительному напрямую не связанному со сменой кода изменению выходного тока. Исключить этот недостаток позволяет структура ЦАП с переключающимися ключами.

Сигналы четырехразрядного ЦАП (опорное напряжение 5 В)
Таблица сигналов четырехразрядного ЦАП (опорное напряжение 5 В).
В такой структуре имеется два выходных узла. В зависимости от значения разрядов входного кода соответствующие им ключи подключаются к узлу, связанному с выходом устройства, или к другому узлу, который чаще всего заземляется. При этом через каждый резистор матрицы ток течет постоянно, независимо от положения ключа, а величина тока, потребляемого от источника опорного напряжения, постоянна.

Общим недостатком обеих рассмотренных структур является большое соотношение между наименьшим и наибольшим номиналом резисторов матрицы. Вместе с тем, не смотря на большую разницу номиналов резисторов необходимо обеспечивать одинаковую абсолютную точность подгонки как самого большого, так и самого маленького по номиналу резистора. В интегральном исполнении ЦАП при числе разрядов более 10 это обеспечить достаточно трудно.

От всех указанных выше недостатков свободны структуры на основе резистивных R-2R матриц. При таком построении резистивной матрицы ток в каждой последующей параллельной ветви меньше чем в предыдущей в два раза. Наличие только двух номиналов резисторов в матрице позволяет достаточно просто осуществлять подгонку их значений.

Выходной ток для каждой из представленных структур пропорционален одновременно не только величине входного кода, но и величине опорного напряжения. Часто говорят, что он пропорционален произведению этих двух величин. Поэтому такие ЦАП называют умножающими. Такими свойствами будут обладать все ЦАП, в которых формирование взвешенных значений токов, соответствующих весам разрядов, производится с помощью резистивных матриц.

Дополнительный материал по теме: https://electroinfo.net/teorija/chto-takoe-mostovoj-vyprjamitel-i-kak-on-ustroen.html

Интегральные технологии позволяют достаточно просто формировать на кристалле резисторы, например, КМОП – технология. Как и все прочие ИС, созданные на ее основе, такие ЦАП, характеризуются низкой стоимостью и низким потреблением. Недостатком данной технологии- это паразитные емкости, и вытекающей из него низкое быстродействие. Большего быстродействия поможет достичь биполярная технология. НО она не рассчитана для создания точных резисторов.

Поэтому при использовании таких технологий ЦАП делается на основе транзисторных источников тока. Зависимость выходного тока транзисторных источников тока от величины питающего напряжения нелинейна, поэтому такие ЦАП умножающими не являются. Кроме использования по прямому назначению умножающие ЦАП используются как аналого-цифровые перемножители, в качестве кодоуправляемых сопротивлений и проводимостей. Они широко применяются как составные элементы при построении кодоуправляемых (перестраиваемых) усилителей, фильтров, источников опорных напряжений, формирователей сигналов и т.д.

Цифро-аналоговый преобразователь.
Цифро-аналоговый преобразователь.

Заключение

Автор статьи
Лагутин Виталий Сергеевич
Инженер по специальности "Программное обеспечение вычислительной техники и автоматизированных систем", МИФИ, 2005–2010 гг.
Задать вопрос

В настоящее время известно огромное количество различных архитектур АЦП и ЦАП, и прежде чем приступить к их изучению, целесообразно ознакомиться с общими концепциями, на которых базируются принципы преобразования и построения преобразователей, с особенностями выполняемых в них операций и протекающих процессов, используемой элементной базой, основными характеристиками и параметрами, а также с основными классификационными признаками. Поскольку ЦАП в функциональном плане проще АЦП и входит в состав некоторых типов АЦП, все подлежащие изучению вопросы будем сначала излагать для ЦАП, а затем для АЦП.

Дополнительный материал по теме можно узнать из статьи Цифро-аналоговый преобразователь. А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу. В завершение хочу выразить благодарность источникам, откуда почерпнут материал для подготовки статьи:

www.ru.bmstu.wiki

www.hifinews.ru

www.russianelectronics.ru

www.cxem.net

www.wikiwand.com

www.studref.com

www.studme.org

Предыдущая
ИнверторыЗачем нужен преобразователь частоты
Следующая
ИнверторыЧто такое преобразователь напряжения
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять