Коэффициент использования заземлителя

Коэффициент использования заземлителей

Для того чтобы обеспечить требуемую величину сопротивления применяют сложные заземлители, состоящие из углубленных заземлителей, соединенных металлическими полосами. В таких заземлителях поля токов, стекающих с углубленных заземлителей и полос, налагаются друг на друга. В результате общее сопротивление сложного заземлителя, измеренное приборами, получается больше, чем сопротивление этого заземлителя, рассчитанное по формуле как сумма сопротивлений параллельно соединенных одиночных заземлителей. Поэтому при проектировании заземляющего устройства необходимое число заземлителей определяется с учетом их влияния друг на друга. В связи, с чем вводится коэффициент использования заземлителей, всегда меньшей единицы

В сложных заземлителях обычно применяются металлические трубы длиной t=2÷3 м, диаметром d=25÷60 мм (диаметр трубы выбирается по условиям механической прочности). Расстояние a между заземлителями берётся равной от 1 до 3 его длин. Для заземлителей, расположенных в один ряд, это расстояние чаще применяется равной одной – двум длинам трубы. При расположении заземлителей по контуру расстояние, как правило, увеличивается до трёх длин

Таблица. Коэффициент использования ηтр заземлителей из труб или уголков

Для заземлителей, расположенных в рядДля заземлителей, расположенных по контуру
Отношение расстояния между заземлителями к их длине, а/lЧисло труб, nηтрОтношение расстояния между заземлителями к их длине, а/lЧисло труб, nηтр
0,34 – 0,870,66 – 0,72
0,76 – 0,800,58 – 0,65
0,67 – 0,720,52 – 0,58
0,56 – 0,620,44 – 0,50
0,51 – 0,560,38 – 0,44
0,47 – 0,500,36 – 0,42
0,33 – 0,39
0,90 – 0,920,76 – 0,80
0,85 – 0,880,71 – 0,75
0,79 – 0,830,66 – 0,71
0,72 – 0,770,61 – 0,66
0,68 – 0,730,55 – 0,61
0,65 – 0,730,52 – 0,58
0,49 – 0,56
0,93 – 0,950,84 – 0,83
0,90 – 0,920,78 – 0,82
0,85 – 0,880,74 – 0,78
0,79 – 0,830,68 – 0,73
0,76 – 0,800,64 – 0,69
0,74 – 0,790,62 – 0,67
0,59 – 0,65

Таблица. Коэффициент использования ηп соединительной полосы для заземлителей

Для заземлителей расположенных в рядДля заземлителей расположенных по контуру
Отношение расстояния между заземлителями к их длине, а/lЧисло труб, nηпОтношение расстояния между заземлителями к их длине, а/lЧисло труб, nηп
0,770,45
0,740,40
0,760,36
0,620,34
0,420,27
0,310,24
0,210,21
0,200,20
0,19
0,890,55
0,860,48
0,790,43
0,750,40
0,560,32
0,460,30
0,360,28
0,340,26
0,24
0,920,70
0,900,64
0,850,60
0,820,56
0,680,45
0,580,41
0,490,37
0,470,35
0,33

Участие в расчётной формуле

В формуле расчета заземления для многоэлектродного заземлителя (контура заземления) коэффициент использования находится в знаменателе.

Коэффициент для одинаковых вертикальных заземлителей имеет значения:

  • от 1 (т.е. не влияет на сопротивление заземления) – при взаимном расстоянии между заземляющими электродами равном их двойной глубине и при их небольшом количестве
  • до 1 / N (т.е. дополнительные электроды не вносят никакого вклада в уменьшение сопротивления заземления) – при расстоянии между заземляющими электродами, приближающемуся к 1/30 от их глубины

Значения для вертикальных электродов

Цифровые значения коэффициента использования без учета влияния заземляющего проводника, для вертикальных заземляющих электродов, размещенных в ряд и по замкнутому контуру:

Размещение в ряд
Отношение расстояния между электродами к их длинеЧисло электродовКоэф.
использования
150,7
1100,6
1150,53
1200,5
250,81
2100,75
2150,7
2200,67
Размещение по замкнутому контуру
Отношение расстояния между электродами к их длинеЧисло электродовКоэф.
использования
150,65
1100,55
1150,51
1200,45
250,75
2100,69
2150,66
2200,63

При количестве электродов более 80 – коэффициент использования в среднем
равен 0,4 при расстояниях между электродами равных их одинарной и двойной глубинам.

Значение для модульного заземления

Для комплектов модульного заземления ZANDZ при конфигурации заземлителя в виде трех электродов на взаимном расстоянии в 5 или 10 метров (для комплектов
ZZ-000-015 и ZZ-000-030 соответственно) – коэффициент использования равен 1.

Классический способ измерения сопротивления заземления

Схема установки для измерения сопротивления растеканию электрического тока. Коэффициент использования заземлителя

Классический способ измерения сопротивления растеканию (Рис. 1) состоит в измерении напряжения и тока в соответствии со схемой (метод вольтметра – амперметра). Пользуясь формулами закона Ома: R = U / I, мы можем определить сопротивление заземления электрода R. Например, если напряжение равно 10 В и ток равен 1 А, то R = U / I = 10 / 1 = 10 Ом. Измерительная система состоит из источника переменного тока, амперметра, вольтметра и двух металлических электродов, забиваемых в землю. Недостатки подобного метода – невысокая точность вследствие наличия в земле различных коммуникаций, большая трудоёмкость, сложность проведения измерений в зимнее время.

Будет интересно➡  Сила магнитной индукции (формулы единицы)

Расстояние между заземляющими электродами

При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор – расстояние между заземляющими электродами. В формулах расчёта заземления этот фактор описывается величиной “коэффициент использования”.

Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:

  • не менее глубины погружения электродов – для модульного
  • не менее 7 метров – для электролитического

Соединение электродов в заземлитель

Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.

Сечение проводника часто выбирается – 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.

Для частного дома без молниеприёмников достаточно медного провода сечением 16-25 мм².

Расчёт электролитического заземления

Расчёт электролитического заземления (расчёт сопротивления заземления) производится как расчет обычного горизонтального электрода в виде трубы, имеющей длину 2,4 метра с учетом влияния электролита на окружающий грунт (коэффициент С).

Формула расчёта сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

Электролитическое заземление

формула расчета заземления электролитического
где:
ρ – удельное сопротивление грунта (Ом*м)
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T – заглубление (расстояние от поверхности земли до заземлителя) (м)
π – математическая константа Пи (3,141592)
ln – натуральный логарифм
С – коэффициент содержания электролита в окружающем грунте
Коэффициент C варьируется от 0,5 до 0,05.
Со временем он уменьшается, т.к. электролит проникает в грунт на бОльший объем, при это повышая свою концентрацию. Как правило, он составляет 0,125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0,5 – 1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

Для электролитического заземления ZANDZ формула расчёта сопротивления заземления упрощается до вида:

Формула расчет заземления ZZ-100-102
– для комплекта ZZ-100-102

где:
ρ – удельное электрическое сопротивление грунта (Ом*м)
Для расчёта взяты следующие величины:
L = 2,4 метра
d = 0,065 метра = 65 мм
T = 0,6 метра
С = 0,125

 

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

размер арматуры для расчета заземления

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.

одиночный заземлитель при расчете заземления

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

rasstojanie

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Обратите внимание: Порядок выбора сечения проводников определяется в ПУЭ, поскольку этот показатель характеризует устойчивость к коррозии (электроды должны служить 5-10 лет).

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

одиночный вертикальный заземлитель
Схема установки одиночного вертикального заземлителя

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.
Будет интересно➡  Все о законе Ома: простыми словами с примерами для "чайников"

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Расчет заземления
Таблица определения параметров заземлителей

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления
стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

сопротивление вертикальных заземлителей

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

удельное сопротивление

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:
определение количества стержней

где Rн – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

формула расчета вертикальных штырей

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

Дополнительная информация: При обустройстве системы из линейно расположенных штырей следует помнить о том, что в этом случае их взаимное влияние проявляется особенно сильно.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Калькулятор расчета заземления

В современном мире, мы не представляет свою жизнь без использования электричества. Оно вокруг нас повсюду и именно оно позволило человечеству перейти на совершенно новый уровень развития. Переоценить его важность невозможно, однако при всех своих положительных качествах, за своей безобидностью и простотой, скрывается колоссальная энергия, которая представляет смертельную опасность.

Для того чтобы обезопасить помещения, где постоянно находятся люди, было создано специальное устройство – заземлитель. Это набор проводников, которые предназначены для отвода электрической энергии от приборов к грунту, тем самым исключая поражение током человека. Он состоит из заземлителей (горизонтальных и вертикальных стержней) и заземляющих проводников.

Для того чтобы упростить расчеты, мы предлагаем вам воспользоваться простым и точным калькулятором расчета заземления.

Для того чтобы выполнить надежный расчет, вам необходимо заполнить поля программы правильно.

  • Грунт. Выберите тип грунта, чтобы определить удельное электрическое сопротивление грунта.
  • Климатический коэффициент. Поправка в расчетах на основании климатической зоны:
    • I зона — от -20 до -15°С (Январь); от +16 до +18°С (Июль);
    • II зона — от -14 до -10°С (Январь); от +18 до +22°С (Июль);
    • III зона — от -10 до 0°С (Январь); от +22 до +24°С (Июль);
    • IV зона — от 0 до +5°С (Январь); от +24 до +26°С (Июль);
  • Вертикальные заземлители. Количество вертикальных заземлителей, их длина и диаметр (расположение вертикальных заземлителей друг относительно друга должно быть на расстоянии не менее их длины, т.е. длина горизонтальной полосы > длина вертикального заземлителя × количество).
  • Горизонтальные заземлители. Глубина заложения горизонтальной полосы, ее длина, ширина полки.

Минимальная рекомендуемая длина вертикального заземлителя должна быть не менее 5 м.
Вертикальные заземлители длиной до 10 м должны быть расположены на расстоянии не менее их длины.
Вертикальные заземлители длиной от 10 м должны быть расположены на расстоянии половины их длины, но не менее 10 м.

Эти значения обусловлены грунтово-климатическими условиями, а именно глубиной промерзания и разной величиной удельного сопротивления грунта в течение года.

Нажимая кнопку «Рассчитать» вы получите следующие показатели:

  • сопротивление вертикального заземлителя;
  • сопротивление горизонтального заземлителя;
  • общее сопротивление растеканию электрического тока.

Последний параметр является определяющим. Согласно ПУЭ 7 «Правила устройства электроустановок» п. 1.7.101: сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660В, 380В и 220В источника трехфазного тока или 380В, 220В и 127В источника однофазного тока.

Как рассчитать заземление в частном доме вручную

Как вы уже поняли, основной параметр, который необходимо рассчитать – это общее сопротивление на растекание, т.е. нужно подобрать такую конфигурацию электродов, чтобы сопротивление заземляющего устройства, не превышало нормативное. Согласно положениям правил устройств электроустановок (ПЭУ), необходимо соблюдать определенные максимумы для токов в трехфазной сети:

  • 60 Ом — для 220 Вольт;
  • 30 Ом — для 380 Вольт;
  • 15 Ом — для 660 Вольт.
Будет интересно➡  Что такое МТЗ ?

Правильный расчет начинается с подсчета оптимального размера и количества стержней. Для того чтобы сделать это вручную, легче всего воспользоваться упрощенными формулами, приведенными ниже.

  • Ro – сопротивление стержня, Ом;
  • L – длина электрода, м;
  • d – диаметр электрода, м;
  • T – расстояние от середины электрода до поверхности, м;
  • pэкв – сопротивление грунта, Ом;
  • ln — натуральный логарифм;
  • π — константа (3.14).
  • Rн – нормируемое сопротивление заземляющего устройства;
  • ψ – поправочный климатический коэффициент сопротивления грунта (1.3, 1.45, 1.7, 1.9, в зависимости от зоны).

Используя эти формулы, вы можете рассчитать заземляющее устройство достаточно точно, однако для упрощения расчета некоторые коэффициенты опускаются.

Также очень важно, чтобы при выборе глубины залегания и длины заземляющих стержней, нижний конец проходил ниже уровня промерзания, так как при отрицательных температурах резко возрастает сопротивление грунта, и возникают определенные сложности.

Пример расчета заземления

Сопротивление растекания тока одного вертикального заземлителя (стержня):

расчет заземления

где – ρэкв – эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.

В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:

furmula-2

где – Ψ – сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t – заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Удельное сопротивление грунта Таблица 1

ГрунтУдельное сопротивление грунта, Ом·м
Торф20
Почва (чернозем и др.)50
Глина60
Супесь150
Песок при грунтовых водах до 5 м500
Песок при грунтовых водах глубже 5 м1000

Заглубление горизонтального заземлителя можно найти по формуле:

furmula-3

Монтаж и установку заземления необходимо производить таким образом, чтобы заземляющий стержень пронизывал верхний слой грунта полностью и частично нижний.

Значение сезонного климатического коэффициента сопротивления грунта Таблица 2

Тип заземляющих электродовКлиматическая зона
IIIIIIIV
Стержневой (вертикальный)1.8 ÷ 21.5 ÷ 1.81.4 ÷ 1.61.2 ÷ 1.4
Полосовой (горизонтальный)4.5 ÷ 73.5 ÷ 4.52 ÷ 2.51.5
Климатические признаки зон
Средняя многолетняя низшая температура (январь)от -20+15от -14+10от -10 до 0от 0 до +5
Средняя многолетняя высшая температура (июль)от +16 до +18от +18 до +22от +22 до +24от +24 до +26

Количество стержней заземления без учета сопротивления горизонтального заземления находится по формуле:

furmula-4

Rн – нормируемое сопротивление растеканию тока заземляющего устройства, определяется исходя из правил ПТЭЭП (Таблица 3).

Наибольшее допустимое значение сопротивления заземляющих устройств (ПТЭЭП) Таблица 3

Характеристика электроустановкиУдельное сопротивление грунта ρ, Ом·мСопротивление Заземляющего устройства, Ом
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
660/380до 10015
свыше 1000.5·ρ
380/220до 10030
свыше 1000.3·ρ
220/127до 10060
свыше 1000.6·ρ

Как видно из таблицы нормируемое сопротивления для нашего случая должно быть не больше 30 Ом. Поэтому Rн принимается равным Rн = 30 Ом.

Сопротивление растекания тока для горизонтального заземлителя:

расчет защитного заземления

Lг, b – длина и ширина заземлителя; Ψ – коэффициент сезонности горизонтального заземлителя; ηг – коэффициент спроса горизонтальных заземлителей (таблица 4).

Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:

furmula-6
– в ряд; furmula-9
– по контуру.

а – расстояние между заземляющими стержнями.

Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

расчет заземления пример

Полное количество вертикальных заземлителей определяется по формуле:

расчет контура заземления

ηв – коэффициент спроса вертикальных заземлителей (таблица 4).

коэффициент использования заземлителей для расчета заземления

Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.

Полученное при расчете число заземлителей округляется до ближайшего большего.

Расчет заземления по указанным выше формулам можно автоматизировать воспользовавшись для расчета специальной программой «Электрик v.6.6», скачать ее можно в интернете бесплатно.

Предыдущая
ТеорияТоковая отсечка и максимальная токовая защита — В чем отличие?
Следующая
ТеорияРабота электрического поля при перемещении заряда
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять