Что такое переходное контактное сопротивление и почему так важно, чтобы оно было минимальным?

Что такое переходное контактное сопротивление

Итак, давайте разберемся, что же такое переходное контактное сопротивление, а для этого надо начать с контактного соединения.

Переходное сопротивление (ПС) – это такое сопротивление, которое появляется там, где поверхности контактов соединяются друг с другом. Оно возникает при преодолении током границы токопроводящего соединения. В этом случае активное сопротивление резким скачком увеличивается при прохождении тока от одной поверхности к другой.

Контактное соединение – это конструктивное устройство, в котором создается механическое и вследствие этого электрическое соединение двух и более проводников входящих в электрическую цепь.

В месте контакта двух проводников создается электрический контакт – токопроводящее соединение, в результате которого ток протекает из одного проводника в другой.

Причем если мы с вами просто приложим два проводника друг к другу, то это не обеспечит надежный контакт. Так как реальный контакт проводников осуществляется не по всей поверхности прислоненных пластин, а лишь в немногочисленных точках.

А все из-за того, что на проводнике присутствуют микроскопические ямы и бугры и даже тщательная обработка (шлифовка) не устранит такие неровности.

Получается, что из-за столь незначительного контакта поверхностей в данном месте будет довольно большое сопротивление протеканию тока.

Сопротивление в месте перехода тока из одного проводника в другой и получило название “Переходное сопротивление контактов.”

Определение. Переходное контактное сопротивление – это активное сопротивление в месте перехода тока из одной детали в другую.

Величину такого сопротивления можно найти по формуле, которая была получена экспериментальным путем:

Как вы, наверное, заметили, если внимательно изучить формулу, то становится очевидно, что сопротивление контакта не имеет прямой зависимости от размера контактных поверхностей. И в этом случае для переходного сопротивления гораздо важнее сила давления (контактного нажатия).

Контактным нажатием называется усилие, с которым оказывается давление одной контактной поверхности на другую.

Число контактных точек начинает увеличиваться по мере того, как возрастает сила нажатия. Причем даже при малом давлении процесс деформации вершин и впадин в значительной степени увеличивает число точек соприкосновения.

И именно по этой причине для создания надежного контакта используют разнообразные способы сжатия и скрепления проводников:

1. Механическое соединение с помощью болтовых соединений.

2. Использование пружин для упругого нажатия (Wago клеммники).

3. Сварка, пайка и опрессовка.

Получается, что переходное контактное сопротивление тем меньше, чем больше сила нажатия, а, следовательно, больше реальная площадь соприкосновения проводников.

Примечание. На первый взгляд кажется, что выше представленное утверждение не согласуется с экспериментально полученной формулой, но на самом деле все прекрасно согласуется. Ведь по формуле мы с вами высчитываем сопротивление в конкретной точке, но с ростом давления количество точек соприкосновения увеличивается, создавая в месте контакта все больше условно параллельных сопротивлений. А, как известно, при параллельном соединении суммарное сопротивление уменьшается.

Но при этом следует учесть, что увеличивать давление (тем самым снижая сопротивление) можно только до определенного уровня. Нельзя допускать пластических деформаций соединяемых проводников, ведь это может привести к их разрушению.

Также данное сопротивление зависит от температуры, ведь при нагреве проводника возрастает переходное контактное сопротивление. Еще следует учесть, что при росте температуры существенно быстрее изменяется удельное сопротивление материала, в результате чего переходное сопротивление наоборот уменьшается.

Получается, что небольшой нагрев не столь страшен, главное чтобы температура не превышала определенных рамок.

Изменение контактного сопротивления со временем

Как говорят классики: “Ничто не вечно под луной.” Так дела обстоят и с надежно выполненным контактом. Минимальное переходное сопротивление у него будет лишь в самом начале, а во время эксплуатации оно может существенно измениться и вот почему.

Сильное влияние на такое сопротивление оказывает температура. Так даже при температуре в 20 градусов по Цельсию медь окисляется, в результате чего на поверхности жилы формируется оксидная пленка, которую достаточно легко разрушить.

А вот если температура провода в результате сильно возросшей нагрузки или плохого контакта возрастет до +70 градусов и более, процесс формирования оксидной пленки ускорится многократно, что приведет к еще большему увеличению сопротивления, а, следовательно, увеличит нагрев, что может привести к плачевным последствиям.

Но еще хуже дела обстоят с алюминием, ведь это очень активный металл и процесс формирования пленки из оксидов идет гораздо интенсивней. А сформированная пленка (в отличие от медной) очень устойчива и тугоплавка. Сопротивление окисла алюминия равно 10^12 Ом*см.

Отсюда следует вывод, что использовать алюминий для выполнения, например, домашней проводки, нежелательно. Ведь таким образом создать надежное контактное соединение со стабильно низким контактным сопротивлением будет достаточно сложно.

И, подводя итог всего вышенаписанного, хочу сказать, что какой бы вы не выбрали способ соединения проводов, самое главное, чтобы контакт был выполнен строго по всем правилам и требованиям, и тогда переходное контактное сопротивление будет минимально, и соединение при должном периодическом обслуживании (если это не сварка тут обслуживание не нужно) прослужит вам очень долго и безаварийно.

Причины возникновения явления

Контактное соединение коммутирует между собой участки электроцепи. Там, где происходит соединение, получается токопроводящее взаимное прикосновение, через которое ток из одного участка цепи переходит в другой. Обычное наложение поверхностей не выполняет качественного соединения. Это связано с тем, что реальные поверхности – это неровности, имеющие выступы и углубления. При достаточном увеличении изображения можно это наблюдать даже на отшлифованных плоскостях.

Внимание! На практике получается, что площадь реального прикосновения гораздо меньше всей площади контакта.

Ещё одной причиной возникновения такого сопротивления являются пленки окисления металла, присутствующие на поверхностях. Они препятствуют движению электричества и стягивают линии тока к точкам касания. Избавиться от этого сопротивления полностью невозможно. Его величина всегда больше, чем удельные сопротивления металлов, из которых выполнены проводники.

Будет интересно➡  Что такое плотность тока?

От чего зависит переходное сопротивление контактов?

Мы выяснили, что от площадей соприкасаемых поверхностей мало что зависит. На нагрев участка механического соединения влияют и другие явления. Например, окисление меди приводит к повышению температуры нагрева на скрутках соединительных проводов. Аналогичный процесс происходит также при соединении алюминиевых проводников.

В результате окисления проводников на их поверхностях образуется тонкая оксидная плёнка. С одной стороны, наличия пленок препятствует проникновению кислорода вглубь металла, предотвращая дальнейшее его разрушение, но с другой стороны они являются ещё одной причиной роста переходных сопротивлений.

Когда медь окисляется, то на поверхности контактной площадки образуется устойчивая плёнка. А это всегда приводит к увеличению сопротивляемости перехода. Устранить дефект можно путём протирания контактов спиртом. Регулярная процедура чистки помогает содержать коммутационные устройства в актуальном состоянии.

Алюминиевый контакт лучше поддаётся влиянию контактного нажатия, благодаря пластичности этого металла. С целью увеличения силы нажатия применяются болты, пружинные зажимы и различные клеммники.

Медные соединительные провода часто припаивают. В местах спайки переходное сопротивление минимальное.

Подводя итог, можем констатировать:

  1. Простое соприкосновение контактных поверхностей не обеспечивает надёжного контакта, поскольку соединение происходит не по всей поверхности, а лишь в немногих точках.
  2. на преодоление контактного перехода почти не влияют размеры и формы контактных площадок (см. график на рис. 3).
  3. Контактное нажатие существенно влияет на структуру перехода. Однако, это влияние проявляется только при сравнительно незначительных усилиях. После некоторого значения приложенной силы, вызвавшей смятие, сопротивляемость току стабилизируется.
  4. Со временем на медных и алюминиевых контактах образуется защитная плёнка, увеличивающая сопротивление. Для борьбы с этим явлением используют сплавы, покрывают поверхности серебром. Окисление активизируется при повышении температуры (для меди свыше 70 ºC). Температура в свою очередь зависит от токов нагрузки.
  5. Очень интенсивно на открытом воздухе окисляется алюминий. Оксидная плёнка алюминия обладает довольно большим удельным сопротивлением.

Что такое переходное контактное сопротивление и почему так важно, чтобы оно было минимальным?
Рис. 3. Переходное сопротивление стали
Чтобы добиться нужного результата, следует учитывать комплексное влияние всех вышеперечисленных факторов. Правилами устройств электроустановок строго регламентируется сопротивление контактной группы. Нарушение этих требований может привести к авариям.

Факторы, влияющие на величину переходного сопротивления

Прежде, чем говорить о факторах, нужно знать, что собой представляют контакты. Они различаются по виду контактируемой поверхности:

  • точечные – соединение происходит в точке;
  • линейные – соприкасаются по линии;
  • плоскостные – контакт по плоскости.

Примеры точечных соединений – «сфера – сфера»; «вершина конуса – плоскость», «сфера – плоскость» и др. К линейным относятся соприкосновения: «тор – плоскость», «цилиндр – плоскость», «цилиндр – цилиндр» и т.п.

Площадь прикосновения контактов можно подсчитать по формуле:

Sпр = F/σ,

где:

  • F – сила сжатия контактов;
  • σ – временное сопротивление материала контактов сжатию.

Существуют разные способы соединения:

  • механические (скрутки, болтовые зажимы, опрессовка);
  • сварка;
  • пайка.

Величина переходного сопротивления определяется по формуле:

Rп = knx/(0,102*Fk)n,

где:

  • knx – коэффициент, обуславливаемый материалом, формой контакта, состоянием поверхности;
  • Fk – сила, с которой сжимаются контакты;
  • n – показатель степени, показывающий число точек соприкосновения.

Показатель степени для разных видов контактов:

  • для точечного – n = 0,5;
  • для линейного – n = 0,5-0,7;
  • для плоскостного (поверхностного) – n = 0,7-1.

Существуют принятые по гост ГОСТ 24606.3-82 нормы переходного сопротивления контактов.

Внимание! С окислением поверхностей металлов в местах соединений можно бороться при помощи протирания контактов спиртосодержащими растворами. Допустимо смазывать болтовые соединения солидолом, это поможет снижать доступ кислорода и замедлять процесс окисления.

Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением.

К сведению. Плохое прижатие контактируемых поверхностей вызывает не только повышение сопротивления, но и увеличение степени нагрева проводников.

Зачем измерять переходное сопротивление (ПС)

Электрические установки (ЭУ), а также корпуса электродвигателей, генераторов, трансформаторов и других преобразователей необходимо заземлять. Присоединение заземляющего устройства к оборудованию и ЭУ выполняется болтовым соединением, которое так же имеет ПС.

Для надёжности срабатывания защитного отключения при коротком замыкании переменного тока на корпус ПС периодически должно проверяться.

Результаты тестирования ПС дают возможность понять, какова вероятность поражения человека током, есть ли опасность возгорания оборудования при повышении температуры на плохих контактах. Высокое ПС увеличивает время срабатывания защитного оборудования.

Методика измерения

Существует регламент измерений Rп для коммутационных устройств: автоматических выключателей, разъединителей, сборных и соединительных шин и другой аппаратуры.

Методы измерений следующие:

  • метод непосредственного отсчёта;
  • способ вольтметра-амперметра;
  • измерение статической нестабильности Rп.

При первом способе тестирования применяют приборы, позволяющие выполнять непосредственный отсчёт с учётом погрешности (±10%). При этом методе измеряют сопротивление контактного соединения.

Важно! Тестируемые поверхности контакт-детали не зачищают и не обрабатывают перед измерением. Контакт-деталь сочленяют (замыкают) и присоединяют к выводам приборов. Размыкание контактов и передвижение измерительных проводов недопустимы.

При помощи метода вольтметра-амперметра определяют величину падения напряжения (при установленном значении тока) на тестируемом переходе.

Схема измерительной установки

Все погрешности измерений приборов, входящих в схему, должны быть в пределах ±3%. Значение R1 подбирают на два порядка больше, чем предполагаемое измеряемое сопротивление.

Расчёт результатов измерений выполняют по формуле:

Rп = UPV2/IPA,

где:

  • UPV2 – результат, полученный на вольтметре PV2, В;
  • IPA – ток, измеряемый амперметром PA, А.

Статическую нестабильность Rп определяют, находя величину среднеквадратичного отклонения Rп по результатам многочисленных замеров.

Внимание! Переходное сопротивление замеряют одним из методов, рассмотренных выше. Контакт-деталь размыкают и заново смыкают перед каждым тестированием, снимая электрическую нагрузку.

Необходимый результат получают, используя формулы на рис. ниже.

Формулы для расчёта результата методом статической нестабильности

Погрешность результатов, полученных при этом методе, лежит в пределах ±10% (с вероятностью 0,95).

Перечень приборов, применяемых для измерений

Измерения Rп переходов проводят и микрометром ММR-610. В результате работы тестируют сопротивления постоянному току контактов автоматов и других соединений. Проводят два вида измерений:

  • однонаправленным током;
  • двунаправленным током.

В первом случае не отображается величина активного сопротивления R, зато этот метод убыстряет процесс измерений там, где нет внутренних напряжений и сил электростатики. Во втором случае прибор устраняет погрешности (ошибки), возникающие от присутствия в тестируемой конструкции таких сил и напряжений.

Микроомметр MMR – 610

Полученные в результате измерений (проверки) данные записываются в протокол, согласно ПУЭ-7 п.1.8.5. Протокол хранится совместно с паспортами на оборудование.

Будет интересно➡  Сила магнитной индукции (формулы единицы)

Как часто замерять ПС заземления

Заземление – это специальное соединение оборудования с заземляющим устройством (ЗУ).

ЗУ представляет собой устройство, состоящее из следующих элементов:

  • заземлителя (контура заземления);
  • шины заземления;
  • заземляющих проводников.

Проверку в полном объёме с вскрытием грунта, осмотром состояния заземлителей и соединяющих их проводников проводят 1 раз в 12 лет. Внеплановые проверки проводят после капитальных ремонтов, связанных с заземляющими элементами. Срок проверки и измерений ПС ЗУ назначается на основании рекомендаций организации, которая выполняла предыдущую проверку.

Значение Rп, лежащее в пределах регламентируемых норм, обеспечивает стабильную работу коммутационных устройств. Это, в свою очередь, способствует бесперебойной и безопасной эксплуатации оборудования.

Переходное сопротивление — контактное соединение

Переходное сопротивление контактного соединения ( контакта) зависит от температуры нагрева контактных деталей и степени его окисления. Повышение переходного сопротивления с повышением температуры контакта объясняется увеличением удельного электрического сопротивления материала контакта.

Переходное сопротивление контактных соединений следует измерять взрывозащищенными приборами в соответствии с требованиями ПУЭ.

Переходное сопротивление контактного соединения в силовой степени зависит от окисления контактной поверхности, которое может привести к увеличению переходного сопротивления в десятки и сотни раз.

Переходное сопротивление контактного соединения при температуре 70 не должно превышать более чем на 20 % сопротивления целого участка шины той же длины. Стабильность соединения достигается установкой под гайку каждого болта пружинящих шайб, которые применяются для медных и стальных шин при резких изменениях температуры или при наличии вибрации, а для алюминиевых шин — во всех случаях.

Переходное сопротивление контактного соединения не должно заметно превышать сопротивления цельного участка шины ( или провода) такой же длины.

Измерение переходных сопротивлений контактных соединений производится микроомметрами или контактомерами, т.е. специальными приборами для измерения малых сопротивлений. Эти приборы имеют специальные контактные наконечники щупов, которые прижимаются к токопроводящим элементам с обеих сторон проверяемого контактного соединения. Со стороны проверяемого сопротивления присоединяются потенциальные наконечники, с внешней стороны — токовые наконечники щупов. Обозначения потенциальных ( П) и токовых ( Т) наконечников нанесены на рукоятки щупов. Оценка качества контактного соединения производится сопоставлением значения сопротивления участка с контактным соединением со значением сопротивления токоведущего элемента на участке, длина которого равна участку с проверяемым контактным соединением.

Большая стабильность и малое переходное сопротивление контактного соединения, осуществленного посредством оси, подтверждаются длительным опытом эксплуатации.

Соответственно изменению действительной площади соприкосновения контактов изменяется переходное сопротивление контактного соединения.

Объективным и прямым методом контроля качества контактного соединения является измерение величины переходного сопротивления контактного соединения или падения напряжения на нем и сравнение полученных данных с нормативными. Наряду с этим контактное соединение осматривают, используя в необходимых случаях лупы, а также измеряют штриховыми инструментами.

Из ( 8 — 20) следует, что при неизменной общей площади соприкасающихся поверхностей переходное сопротивление контактного соединения или контакта тем меньше, чем больше контактное давление, так как от него зависит их действительная площадь соприкосновения деталей.

Необходимо также измерять омическое сопротивление обмоток встроенных ( втулочных) трансформаторов тока на всех отпайках, обмоток реле, переходных сопротивлений контактных соединений, недоступных для осмотра, и отдельных контактных соединений, вызывающих сомнение в их качестве

Особое внимание надо уделять штепсельным и скользящим контактным соединениям, например контактам, с помощью которых вторичные элементы тележки ячейки КРУ соединяются со вторичными элементами, расположенными в неподвижных отсеках.

Количество тепла, выделяющееся в 1 сек в контактном соединении или в контакте, равно I2RK, где / — величина тока, а Кк — переходное сопротивление контактного соединения или контакта. Одновременно с процессом нагрева идет процесс охлаждения путем отдачи тепла в окружающее пространство и прилегающим менее нагретым металлическим частям. Температура контактного соединения или контакта установится после того, как количество тепла, выделяющееся в нем, будет равно количеству отдаваемого тепла.

Негативные факторы, возникающие от высокого переходного сопротивления

Законы электротехники констатируют факт увеличения выделяемого тепла на контактах при высоком переходном сопротивлении. Это приводит к тепловому расширению проводников и соответственно к ослаблению места контакта. Слабый контакт, в свою очередь повышает переходное сопротивление, которое в конечном итоге стремится к бесконечности. Резко возрастающий ток вызывает отгорание или сваривание контактных соединений. Процесс нагрева может происходить с образованием электрической дуги, что создает реальную опасность возникновения пожара.

Как уменьшить величину переходного сопротивления

Для обеспечения нормальной работы электрооборудования, недопущения аварийных ситуаций существуют рекомендации по применению способов реализации контактных соединений.

Механические

Этот способ основан на сжатии соприкасаемых поверхностей проводников для увеличения пятна контакта. Зависимость переходного сопротивления (Rn) от усилия  сжатия F (давления) показана на графике.

график

Из графика следует, что чем больше усилие сжатия, тем меньше переходное контактное сопротивление. Однако целесообразность в повышении усилия сжатия имеет ограничения. При достижении определенной величины оно уже перестает влиять на изменение сопротивления. Следует учитывать прочностные характеристики сжимаемых контактов при выборе оптимального давления. Для примера рассмотрим несколько наиболее часто применяемых механических способов соединения проводников.

  • Опрессовка. Этот способ заключается в совместном деформировании опрессовочной гильзы и соединяемых контактных проводников. Основными инструментами для опрессовки служат пресс-клещи и переносные гидропрессы. Гильза для повышения электрических характеристик соединения выполняется из специальных материалов (электротехническая медь, электротехнический алюминий). Опрессовка
  • Зажимы с помощью резьбовых соединений. В качестве рабочего материала для таких соединений применяются клеммные колодки. Они состоят из пластикового корпуса, в который вставлены с обеих сторон латунные трубки с резьбой с предварительно накрученными винтиками. Для соединения в отверстия клеммы вставляются соединяемые проводники и закручиванием винтов с определенным усилием крепятся в ней.

Зажимы

  • Пружинные зажимы. Отличаются разнообразием конструкций, но в основе всех заложена пружина, обеспечивающая своей силой упругости давление на контактируемые поверхности проводников. Здесь важно использовать пружинные зажимы от производителей. Некачественные пружины со временем могут потерять упругость и ослабить контакт. На изображении зажим при помощи листовой пружины от немецкого производителя WAGO.

Пружинные зажимы.

Соединение контактов с помощью сварки

Эта технология позволяет создать надежный контакт с минимальным превышением переходного сопротивления. Применяется в электромонтажных работах, где в качестве расходника используется угольный электрод. Малый сварочный ток дает относительно слабую электрическую дугу и практически нулевое разбрызгивание металла дают электромонтажнику возможность работы в защитных очках вместо маски.

Будет интересно➡  Ватт - единица измерения мощности

Соединение контактов с помощью сварки

Сварку следует производить на короткой дуге, при увеличенной внешняя воздушная среда оказывает отрицательное воздействие на зону сварки в виде появления на ней пор, что повышает величину переходного сопротивления.

Пайка контактов

Перед пайкой важно правильно выполнить скрутку соединяемых проводников. Самостоятельная эксплуатация контактов выполненных в виде скруток запрещено  ПУЭ («Правилами устройства электроустановок»). Сам процесс не требует особых навыков в отличие от сварки, где надо уметь держать короткую дугу. Так как материал, с помощью которого производят пайку (свинцово-оловянный и ему подобные) не обладает высокими прочностными характеристиками, то эта технология используется для соединения малых сечений (кабеля контрольные, управления, интернет кабеля).

Пайка контактов

Борьба с окислениями поверхностей контактов повышает эффективность передачи тока через соединение. Следует не допускать длительный период работы контактов из меди или алюминия, необходимо периодически выполнять чистку поверхностей спиртом.

Покрытие контактов серебром, платиной, лужение, никелирование, цинкование добавляют им коррозионную стойкость. При этом указанное покрытие практически не влияет на электрические характеристики соединения.

Как контролировать величину переходного сопротивления

В графики планово — предупредительного ремонта электрического оборудования, в котором имеются контактные устройства в обязательном порядке входит проверка их переходного сопротивления. Периодичность таких работ учитывает требования ПТЭЭП («Правил технической эксплуатации электроустановок»). Однако решающее слово о назначении проверки переходного напряжения остается за эксплуатирующей электрооборудование организацией. Своевременное обнаружение неисправности контактов позволяет предотвратить выход из строя всего оборудования.

Выявить неисправность контакта поможет измерение переходного сопротивления. Существует несколько методов в определении этого параметра. Однако общим для всех способов замера служит измерение переходного сопротивления в установленных нормативно — технической документацией значений тока и напряжения.

Установленные ПУЭ значения номинального тока и напряжения для определения допустимого переходного сопротивления не позволяют напрямую применять для измерения обычные омметры или тестеры. Выйти из положения поможет простая схема с применением амперметра и милливольтметра.

схема

Увеличением/уменьшением нагрузки R подбирается рабочий ток контактной пары, а милливольтметр фиксирует при данном токе напряжение. По формуле закона Ома переходное сопротивление контакта определяется расчетным путем.

Существуют специальные миллиомметры и микроомметры с помощью которых переходное сопротивление контакта можно определить, подключив зажимы непосредственно к его концам.

микроомметр

Эти измерительные приборы отличаются по принципу действия, весогабаритным характеристикам, метрологическими показателями. Однако требования к зажимам («крокодильчикам») у них одинаковые. Они должны плотно прилегать к подключаемым с их помощью концам входа и выхода, для чего зажимы оснащаются болтовыми соединениями, пружинами сжатия и другой подобной оснасткой.

измерение

Некоторые электрические устройства имеют конструктивные особенности, которые необходимо учитывать при измерении переходного сопротивления. Например, высоковольтные выключатели оснащены трансформаторами тока. В процессе измерения переходного сопротивления подача тока вызывает переходной процесс, возникающий в обмотках трансформатора. Измерительный прибор должен иметь в конструкции устройство обеспечивающее исключение такой погрешности.

Устранить под ноль переходное сопротивление согласно законам физики невозможно. Надо просто научиться с ним мирно сосуществовать, соблюдая все технические регламенты по профилактике контактных пар, контролю их с помощью измерительных приборов. В этом случае величина переходного сопротивления будет столь мала, что ее негативное влияние не будет ощущаться при работе электроустановок.

Сложность измерения сопротивлений в различных соединениях

В силовой электрической цепи полюса высоковольтного выключателя кроме переходного сопротивления контактов присутствует и сопротивление различных соединений. Чаще всего приборы комплектуются только измерительным кабелем зажимом типа «крокодил», и при неправильном его подключении к контактам между аппаратным зажимом и шпилькой ввода — переходное сопротивление может иметь завышенныо значения, прибор покажет значение выше паспортной величины, и будет выполнен совершенно не нужный ремонт контактов выключателя.

Если же снимать потенциальные сигналы не аппаратных зажимов, а со шпилек, то в измеряемый участок цепи окажется включенным только переходное сопротивление контактов выключателя. Но закрепить «крокодилы» непосредственно за шпильки часто не удается из-за отсутствия доступа к ним, поэтому прибор должен комплектоваться специальными выносными потенциальными контактами.

Нормы по ПУЭ 7

Правилами предусмотрено соблюдение важных параметров, включая допустимые значения для контактных переходов. Измерения сопротивления постоянному току проводятся при испытаниях разъединителей и отделителей. Нормы по ПУЭ 7 требуют, чтобы показания величин для отделителей и разъединителей, предназначенных для работы под напряжением от 110 кВ, соответствовали данным заводов-изготовителей.

По правилам ПУЭ 7 для разъединителей типа РОН3, рассчитанных на номинальное напряжение 400 – 500 кВ (при номинальном токе 2000 А) переходное сопротивление не должно превышать 200 мкОм. Для ЛРН (110 – 220 кВ/ 600 А сопротивление контактов должно составлять 220 мкОм.

Требования для остальных типов отделителей, применяемые в сетях 110 – 500 кВ:

  • Номинальному току 600 А соответствует сопротивление 175 мкОм;
  • 1000 А – 120 мкОм;
  • 1500 – 2000 А – наибольшее допустимое сопротивление 50 мкОм.

Измерения выполняются между точкой «контактный ввод» и на клемме «контактный вывод».

Нюансы

Измерение металлосвязи проводится сразу после монтажа, прямо перед пуском и началом эксплуатации, а затем, с периодичностью в 3 года, при проведении плановых испытаний и обслуживания. Вместе с проверкой, а также при смене времени года, когда возможны подтапливания и излишняя влажность, проверяют сопротивление изоляции кабелей и электрических машин.

Что такое переходное сопротивление контактов и как его измерять?

Проверить качество контакта и измерить его переходное сопротивление с помощью простого бытового мультиметра, типа DT830 и подобных не получится. В области малых сопротивлений они либо не измеряют вообще (до десятых, но не сотых Ома), а одно только сопротивление между щупами у них доходит до 1 Ома, а иногда и превышает. О точности здесь говорить не приходится.

Иногда, чтобы измерить качество контакта, не нужны приборы, так как очевидно его разрушение. В крайних случаях доходит до того, что можно измерить его температуру рукой, если он греется — значит нужна его профилактика и последующие замеры и проверка милиомметром.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается, как проверяют наличие металлосвязи прибором:

Проверка металлосвязи очень важна для безопасности жизнедеятельности сотрудников предприятия и жильцов дома. Из-за плохого заземления в розетках или его полного отсутствия есть вероятность появление потенциала на корпусе прибора. А когда человек к нему коснется, произойдет либо электротравма, либо непоправимое. Надеемся, предоставленная информация была для вас полезной и интересной!

Предыдущая
ТеорияЧто такое МТЗ ?
Следующая
ТеорияТиристорный преобразователь частоты
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять