Что такое импульсный трансформатор и как его рассчитать

Импульсные трансформаторы

Импульсным трансформатором называется важная деталь, широко применяемая практически во всех радиоэлектронных приборах. Это телевизоры, мониторы компьютеров, все цифровые и аналоговые устройства. Трансформатор обеспечивает передачу импульсных сигналов. Вывод по сравнению с поданной на входе формой получается с минимальным искажением. В основном работают с прямоугольными импульсами.
В статье разобраны главные принципы работы импульсных трансформаторов, приведены характеристики и различия в их устройстве. В качестве бонуса в конце статье читатель найдет видео c наглядным разбором устройства и книгу Вдовина С. С. «Проектирование импульсных трансформаторов». Интересующие подробности можно уточнить в комментариях, эксперты ответят на любые ваши вопросы.

Виды импульсных трансформаторов

Общие конструктивные схемы и классификация

Импульсные трансформаторы отличаются многообразием конструктивного исполнения. Это обусловлено их применением в широком диапазоне энергий, мощностей, напряжений, длительностей импульсов, различиями в назначении и условиях эксплуатации.
Тем не менее, несмотря на это многообразие, все конструктивные схемы ИТ можно свести к четырем основным: стержневой, броневой, бронестержневой и тороидальный. Таким образом, по конструктивным признакам ИТ можно классифицировать следующим образом:

  • стержневые;
  • броневые;
  • бронестержневые;
  • тороидальные.

Форма поперечного сечения МС у них может быть прямоугольной или круговой. Характерная конструктивная особенность ИТ – относительно малое число витков в его обмотках. По этой причине объем проводниковых материалов обмоток ИТ намного меньше объема МС и в качестве обобщающего технико-экономического показателя конструкции ИТ естественно принимать объем его МС.

Классификация импульсных трансформаторов
Классификация импульсных трансформаторов по виду сердечника и катушек.

Если принять такой показатель качества, то так как не все конструкции в этом отношении равноценны, ведь в каждой из них эффективно используется только та часть объема МС, которая заключена внутри обмоток, внешние части МС, т.е. ярма, служат только для проведения рабочего магнитного потока ИТ, а поперечное сечение постоянно по длине, то эффективность использования МС можно охарактеризовать коэффициентом использования длины λ = h/l, где под высотой обмотки h понимается суммарная высота катушек.

Максимальные значения этого коэффициента составляют: для тороидальной МС – 0.95; для стержневой – 0.6; для броневой и бронестержневой – 0.3. Таким образом, наиболее экономичны ИТ тороидального типа, относительно экономичны – стержневого и менее всего экономичны – броневого и бронестержневого.

[stextbox id=’black’]Если учесть, что конструктивно и технологически стержневые, броневые и бронестержневые ИТ примерно равноценны, то следует вывод о целесообразности применения тороидальных и стержневых МС в ИТ, особенно мощных, отличающихся большим объемом МС.[/stextbox]

Коэффициент использования длины МС можно повысить, увеличив высоту стержня или диаметр МС. Однако такие вытянутые в высоту или увеличенного диаметра конструкции имеют большие габариты, менее прочны, нетехнологичны, для них характерен повышенный расход проводниковых материалов, потери мощности в обмотках, искажения трансформированных импульсов и другие недостатки.

Тем, кому будет интересно почитать, материал в тему: малоизвестные факты о двигателях постоянного тока.

Однако наиболее важно то, что высшие функциональные показатели достигаются в конструкциях ИТ с максимальной большой площадью сечения и минимальной длиной МС. В связи с этим коэффициент использования длины МС является показателем относительным и характеризует только степень конструктивного совершенства ИТ.

Схема импульсных трансформаторов
Схема подключения импульсных трансформаторов.

Облегчает классификацию следующее соображение. Характерным признаком класса напряжения является тип и конструкция главной изоляции ИТ, в сильной степени определяющая собой и конструкцию ИТ в целом.

Так, в ИТ на напряжение до 20 кВ удается применять сухую изоляцию из слоистых диэлектриков, в некоторых случаях – воздушную при нормальном давлении.

Будет интересно➡  КТП — комплектные трансформаторные подстанции

Поэтому, несмотря на определенную условность, целесообразно ввести такую классификацию по классу напряжения, чтобы значения напряжения отражало и конструктивные особенности изоляции, т.е. в следующем виде:

  • ИТ класса напряжения до 20 кВ;
  • ИТ класса напряжения до 100 кВ;
  • ИТ класса напряжения свыше 100 кВ.

В интервале напряжений 20-100 кВ обычно применяют бумажно-масляную или бумажно-пленочно-масляную изоляцию. При напряжении более 100 кВ лучшие результаты дает применение чисто масляной изоляции.

Процессы трансформации импульсов

Одним из основных элементов импульсных источников питания является импульсный трансформатор. Особенность работы данного вида трансформатора заключается в том, что на вход подается периодическая последовательность импульсов одной полярности, содержащие постоянную составляющую тока.

Принцип действия импульсного преобразователя напряжения полностью идентичен работе любого другого трансформатора, то есть к обмотке первичной катушки индуктивности подается входное напряжение Uвх, которое в полном соответствии с законом электромагнитной индукции преобразовывается на обмотке вторичной катушки в напряжение выхода Uвых с измененными параметрами.

Коэффициент трансформации напряжения определяется соотношением витков намотки импульсного трансформатора для каждой катушки. Однако в отличие от обычных трансформаторов, работающих с синусоидальными гармониками стандартной частоты 50 Гц, на вход ИТ подаются импульсы длительность несколько десятков мкс, что соответствует частотам в пределах десятков кГц.

Электронный трансформатор
Простая схема электронного трансформатора.

Обычно это электромагнитные сигналы после выпрямления переменного сетевого тока по полумостовым, мостовым или другим схемам, используемым в электронных преобразователях напряжения.

 

 

Особенности конструкции

Сердечники импульсных преобразователей имеют тороидальную или Ш-образную форму. При выполнении намотки импульсного трансформатора своими руками мастера предпочитают кольцевую (тороидальную) конфигурацию магнитопровода, поскольку для него не нужно специально готовить каркас и приспособление под намотку. Для изготовления сердечников используются материалы с повышенной магнитной проницаемостью типа:

  • ферритов;
  • трансформаторной кремнистой стали;
  • пермаллоя.

Ферритовые кольцевые сердечники широко распространены, дешевы и доступны. Обозначение изделия выполняется по типу К Dxdxh, где К – сокращение от слова «кольцо», D, d и h – соответственно, размеры внешнего и внутреннего диаметров кольца, высоты кольца. Размеры обозначают в мм, например, К 28×16х9.
На ферритовом основании наматываются первичная и вторичная обмотки.

Интересный материал в тему: Что нужно знать о трансформаторах тока.

Ключевой особенностью конструкции является намотка первичной обмотки против часовой стрелки, вторичной – только по часовой. При изменении направления намоток мощность устройства значительно уменьшается. Обмотки наматываются с обеих сторон кольца, на внутренней стороне – с малым числом витков, на внешней – с большим количеством витков.

Для снижения индуктивности рассеивания считают необходимым наматывать двуслойно одну обмотку, а между ее слоями помещать другую обмотку. Иногда обмотки мотают двумя проводами одновременно, тогда провода витков одной обмотки располагаются между проводами витков другой.

Как проверить устройство

После сборки ИТ, его проверяют. Методик, как проверить собранный собственноручно или приобретенный импульсный трансформатор, предостаточно. Для проверки собирают схемы с использованием частотных генераторов, осциллографов, мультиметров и других приборов, которые не только подтверждают работоспособность ИТ.

Они выполняют его тестирование в различных частотных диапазонах. В импульсном трансформаторе не допускается разомкнутое состояние вторичной обмотки, такой режим относится к категории небезопасных режимов.

Проверка импульсного трансформатора
Как проверить импульсный трансформатор.

Также должны иметь минимальную индуктивность рассеивания, динамическую емкость и сопротивление; быть достаточно прочными механически.

Он должен обладать виброустойчивостью и выдерживать воздействие значительных электродинамических сил, возникающих как в нормальном режиме работы, так и, особенно, при коротких замыканиях цепи нагрузки.

Требования высокой электрической прочности и минимальной индуктивности рассеяния взаимно противоречивы. Так как для увеличения электрической прочности необходимо увеличивать толщину и изоляции, в то время как для уменьшения индуктивности рассеяния требуется уменьшать толщину.

Будет интересно➡  Особенности применения и срабатывания разных защит трансформатора

Изоляция проводов и обмоток

Обмотки ИТ должны удовлетворять следующим основным требованиям: быть достаточно электрически прочными, изоляция обмоток должна выдерживать без повреждений длительное воздействие номинальных рабочих напряжений и кратковременное воздействие повышенных напряжений в возможных аварийных ситуациях.

Уменьшение емкости обмоток, в свою очередь, находится в противоречии с требованием минимальной индуктивности рассеяния. Однако в большинстве случаев уменьшение индуктивности рассеяния является более важной задачей, чем уменьшения емкости.

По этим причинам размеры изоляционных промежутков обычно доводят до возможного минимума, определяемого необходимой электрической прочностью обмоток. Уменьшить емкость стремятся применением изоляционных материалов с возможно меньшей диэлектрической проницаемостью, а также за счет конструктивных факторов.

Итак, главные требования к изоляционным материалам состоят в малой диэлектрической проницаемости и пригодности для режимов с высокой напряженностью электрического поля. При больших токах и длительности импульса применяют провода более экономичного прямоугольного сечения или тонкие и широкие медные шины из фольги, иногда из нескольких слоев, проложенных изоляцией.

Как правильно изолировать провода и обмотку

Лучшие материалы для устройства

Практика конструирования ИТ показала, что лучшими изоляционными материалами, наиболее полно удовлетворяющим перечисленным требованиям, являются трансформаторное масло, кабельная и трансформаторная бумага, пропитанная трансформаторным маслом, электрокартон, пленки из фторопласта, чередующиеся со слоями бумаги, органическое стекло.

В качестве несущих элементов конструкции – бумажно-бакелитовые трубки и цилиндры, сборные каркасы из органического стекла. Фторопластмассовые пленки следует применять лишь в таких ИТ, у которых температура обмоток может превышать 95ºС.

Недостаток пленок в том, что по ним в продольном направлении легко развивается поверхностный разряд. Органическое стекло широко применяется в ИТ вследствие высоких изоляционных свойств и возможности механической обработки.

При напряжениях 100 кВ целесообразна изоляция в виде чистого трансформаторного масла. В отличие от слоистой чисто масляная изоляция в высокой степени однородна по свойствам. Это позволяет в конструкциях с ослабленным краевым эффектом практически полностью использовать высокие электроизоляционные свойства трансформаторного масла.

[stextbox id=’info’]Масляная изоляция имеет и другие важные достоинства. Трансформаторное масло обладает хорошей текучестью и может свободно конвектировать в пространстве между обмотками и МС. Следствием этого, а также высокой теплоемкости масла является хороший отвод теплоты от обмоток и МС.[/stextbox]

Диэлектрическая проницаемость трансформаторного масла примерно в два раза меньше, чем у изоляционной бумаги и электрокартона. Это позволяет во столько же раз уменьшить емкость обмоток ИТ. Важным эксплутационным достоинством масляной изоляции является также ее восстанавливаемость после кратковременных аварийных состояний (единичный пробой или искрение).

Легко осуществима также и замена масла при регламентных работах. Таким образом, при большой мощности и напряжении масляная изоляция является наиболее целесообразным типом изоляции в ИТ. Однако ее применение возможно только в специально разработанных конструкциях, в которых, обеспечена свободная циркуляция масла и отсутствуют пути для распространения поверхностного разряда.

Интересный материал для ознакомления: что такое трехфазный двигатель и как он работает.

Конструкция обмотки

Обмотки ИТ отличаются относительно небольшим числом витков. Однако напряжения на обмотках обычно измеряются десятками и сотнями киловольт, вследствие чего напряжение, приходящиеся на один виток обмотки (витковое напряжение), может составлять единицы, а в мощных ИТ – даже десятки киловольт.

Поэтому при конструировании обмоток ИТ приходится уделять особое внимание межвитковой изоляции обмоток. Для обеспечения требуемой электрической прочности межвитковой изоляции в обмотках ИТ используют провода с усиленной изоляцией, в основном марок ПЭВ-2, ПБ, ПБУ. Провода круглого сечения ПЭВ-2 обычно применяют в ИТ малой и средней мощности, а также во вторичных обмотках мощных высоковольтных ИТ.

Будет интересно➡  Что такое тяговая подстанция

Провода прямоугольного сечения ПБ, ПБУ, способны выдерживать межобмоточное напряжение 10 кВ, применяют в первичных обмотках ИТ средней мощности и в обеих обмотках весьма мощных ИТ.
В целом, рассматривая обмотки мощных высоковольтных ИТ, необходимо отметить следующее. Принципиальная необходимость малоискаженной трансформации весьма коротких импульсов вынуждает конструировать ИТ с очень малой индуктивностью рассеяния и емкостью обмоток.

Следовательно, с минимальным размером обмоток, в частности с минимальными размерами изоляционных промежутков. Для лучшего понимания предмета рекомендуем посмотреть видеоролик о том, как разобрать импульсный трансформатор.

Как намотать тороидальный трансформатор

При помощи наждачной бумаги стачиваем острые грани. Чтобы предотвратить пробой между первичной обмоткой и сердечником, на кольцо следует намотать изоляционную прокладку. Иногда, при изготовлении самодельных импульсных трансформаторов, радиолюбители используют фторопластовую ленту – ФУМ, которая применяется в сантехнике.

Как намотать импульсный трансформатор

Работать этой лентой удобно, но фторопласты обладают холодной текучестью, а давление провода в области острых краёв кольца может быть значительным. Во всяком случае, если Вы собираетесь использовать ленту ФУМ, то проложите по краю кольца полоску электрокартона или обычной бумаги.

При намотке прокладки на кольца небольших размеров очень удобно использовать монтажный крючок. Монтажный крючок можно изготовить из куска стальной проволоки или велосипедной спицы.

Аккуратно наматываем изолирующую ленту на кольцо так, чтобы каждый очередной виток перехлёстывал предыдущий с наружной стороны кольца. Изоляция снаружи кольца становится двухслойной, а внутри – четырёх-пятислойной.

Для намотки первичной обмотки нам понадобится челнок. Его можно легко изготовить из двух отрезков толстой медной проволоки. Если для какой-либо обмотки используется провод диаметром менее 0,5мм, то выводы лучше изготовить из многожильного провода. Припаиваем к началу первичной обмотки отрезок многожильного изолированного провода.

Самодельный челнок для намотки трансформатора

Изолируем место пайки небольшим отрезком электрокартона или обыкновенной бумаги толщиной 0,05-0,1 мм. Наматываем начало обмотки так, чтобы надёжно закрепить место соединения. Те же самые операции проделываем и с выводом конца обмотки, только на этот раз закрепляем место соединения х/б нитками. Чтобы натяжение нити не ослабло во время завязывания узла, крепим концы нити каплей расплавленной канифоли.

Намотка обмотки

Если для обмотки используется провод толще 0,5мм, то выводы можно сделать этим же проводом. На концы нужно надеть отрезки полихлорвиниловой или другой трубки (кембрика). Поверх первичной обмотки наматываем два слоя лакоткани или другой изолирующей ленты.

Это межобмоточная прокладка необходима для надёжной изоляции вторичных цепей блока питания от осветительной сети. Если используется провод диаметром более 1-го миллиметра, то неплохо в качестве прокладки использовать киперную ленту.

Если под рукой не оказалось провода достаточного сечения, то можно намотать обмотку несколькими проводами, соединёнными параллельно. На картинке вторичная обмотка, намотанная в четыре провода.

Заключение

Надеемся, теперь вам полностью понятен принцип работы трехфазных асинхронных двигателей. Для лучшего понимания вопроса предлагаем скачать книгу Вдовина С. С. “Проектирование-импульсных-трансформаторов”.

Вся самая новая информация по этой теме, а также по теме металлоискателей, размещена также в нашей группе в социальной сети «Вконтакте». Чтобы подписаться на групу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В нашей группе можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков.

В завершение объемной статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.expertelektrik.ru

www.stoom.ru

www.topref.ru

www.sdelaitak24.ru

Предыдущая
ТрансформаторыЧто нужно знать о трансформаторах тока
Следующая
ТрансформаторыКак устроен силовой трансформатор и где его применяют?
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Добавить комментарий

1 + 7 =

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять