Релейная защита силовых трансформаторов.

Повреждения, ненормальные режимы работы

В обмотках трансформаторов и автотрансформаторов могут возникать следующие виды повреждений: междуфазные к.з.; замыкания одной или 2-х фаз на землю; замыкания между витками одной фазы (витковые замыкания); замыкания между обмотками разных напряжений; утечка масла из бака. На вводах трансформаторов и автотрансформаторов, на ошиновке также могут возникать к.з. между фазами и на землю.

Кроме повреждений могут происходить нарушения нормальных режимов работы трансформаторов и автотрансформаторов, к которым относятся: сверхтоки внешних к.з. на смежных элементах сети; перегрузка, выделение из масла горючих газов; понижение уровня масла; повышение температуры, повышение напряжения.

В соответствии с «Правилами устройства электроустановок» (ПУЭ) для трансформаторов (автотрансформаторов) должны быть предусмотрены устройства релейной защиты от следующих видов повреждений:

  1. Междуфазных к.з. в обмотках и на выводах.
  2. Однофазных к.з. в обмотке и на выводах, присоединенных к сети с глухозаземленной нейтралью.
  3. Витковых замыканий в обмотках.
  4. Сверхтоков внешних к.з.
  5. Перегрузки.
  6. Понижения уровня масла.
  7. Пробоя изоляции вводов (для трансформаторов с вводами 500 кВ).
  8. Однофазных замыканий на землю на стороне сети с напряжением 6-35 кВ с изолированной нейтралью.

Защиты трансформаторов и автотрансформаторов должны выполнять следующие функции:

  • отключать трансформатор (автотрансформатор) от источников питания при его повреждении;
  • отключать трансформатор (автотрансформатор) от поврежденной части сети при прохождении через него сверхтоков внешних к.з.;
  • подавать сигнал дежурному персоналу при ненормальных режимах работы трансформатора (автотрансформатора) – при перегрузках, выделении из масла газа, понижении уровня масла, повышениях температуры.

В соответствии с назначением для защиты трансформаторов и автотрансформаторов при их повреждениях и ненормальных режимах работы применяются следующие виды защит:

  1. Дифференциальная защита для защиты от повреждений обмоток, вводов и ошиновок.
  2. Токовая отсечка мгновенного действия для защиты от повреждений ошиновок, вводов и части обмотки со стороны источника питания.
  3. Газовая защита для защиты от повреждений внутри бака трансформатора (автотрансформатора), сопровождающихся выделением из масла газа.
  4. Максимальная токовая защита для защиты от сверхтоков проходящих через трансформатор (автотрансформатор) при повреждениях как самого трансформатора, так и смежных элементов сети, связанных с ним.
  5. Защита от замыканий на корпус.
  6. Защита от перегрузки.
  7. Защита от повышения напряжения.

Кроме того, в отдельных случаях, на трансформаторах и автотрансформаторах могут устанавливаться и другие виды защит.

Защиты от повреждений выполняются с действием на отключение, а защиты от ненормальных режимов работы – на сигнал для оповещения дежурного персонала или на отключение на подстанциях без постоянного дежурного персонала.

Выводы:

  1. При эксплуатации трансформаторов и автотрансформаторов в них могут возникать повреждения (междуфазные к.з., замыкания на землю одной и 2-х фаз, витковые замыкания, утечка масла из бака, замыкания между обмотками разных напряжений), а также нарушения нормальных режимов работы (сверхтоки внешних к.з., перегрузка, понижение уровня масла, повышение температуры масла, повышение напряжения).
  2. Защиты трансформаторов (автотрансформаторов) от повреждений выполняются с действием на отключение.

Защиты от ненормальных режимов выполняются с действием на сигнал, а на подстанциях без постоянного дежурного персонала – на отключение.

Параметры силовых трансформаторов

Для выбора типа защиты трансформаторов от короткого замыкания, необходимо определиться с его параметрами. Большая их часть и самая важная отражена в паспорте или на шильде самого силового или измерительного трансформатора. В соответствии с ГОСТ 11677—85 “Трансформаторы силовые” принята единая структурная схема условного обозначения трансформаторов:

  • О – однофазный;
  • Т – трехфазный;
  • М – масляный;
  • С – сухой;
  • З – защитное исполнение;
  • Г – герметичное;
  • Н – возможность регулирования под нагрузкой.

После буквенной части обозначения через тире указывается номинальная мощность силового трансформатора в киловольт-амперах (кВ-А), затем через дробь — класс напряжения стороны высшего напряжения (ВН) в киловольтах (кВ) и далее через тире — климатическое исполнение и категория размещения оборудования по ГОСТ 15150—69:

  • У – для умеренного климата;
  • ХЛ — холодного;
  • Т — тропического;
  • 1 — для работы на открытом воздухе;
  • 2 — для работы в помещениях, где температура и влажность такие же, как на открытом воздухе;
  • 3 — для закрытых помещений с естественной вентиляцией;
  • 4 — для работы в помещениях с искусственным регулированием климата;
  • 5 — для работы в помещениях с повышенной влажностью.

Номинальные мощности силовых трансформаторов должны соответствовать ГОСТ 9680—77. Трансформаторы масляные 10 кВ для питания электроприёмников выпускаются с номинальной мощностью до 2,5 MB-А, а для связи между электросетями разных напряжений — до 6,3 МВ-А: например, 25, 40, 63, 100, 160, 250, 400, 630 кВ-А, а также 1; 1,6 и 2,5 МВ-А. Трансформаторы сухие (ТСЗ) выпускаются с номинальной мощ-ностью 160, 250, 400, 630 кВ-А, а также 1 и 1,6 МВ-А.

Виды защит силовых трансформаторов

Виды реле для РЗА
Трансформаторы 10/0,4 кВ в сельских и городских распределительных электрических сетях мощностью до 0,63 MB-А включительно, как правило, защищаются плавкими предохранителями на стороне 10 кВ и весьма часто также плавкими предохранителями на стороне 0,4 кВ. Автоматические воздушные выключатели предназначены для автоматического отключения электрических цепей до 1000 В при токах КЗ и перегрузках.

Будет интересно➡  Масляные трансформаторы – что это такое, устройство и принцип работы

Релейная защита силовых трансформаторов мощностью 1000кBА и выше от ненормативных показателей напряжения, короткого замыкания и так далее, подразделяется на виды: продольная дифференциальная, токовая защита трансформатора без задержки времени, газовая, максимальная токовая защита со стороны питания, специальная токовая защита нулевой последовательности, специальная резервная максимальная токовая защита трансформатора, максимальная токовая защита в одной фазе, защита (сигнализация) от однофазных замыканий на землю в обмотке или на выводах трансформатора, а также на питающей линии 10 кВ.

Вид защиты зависит от угрозы. Так, продольная дифференциальная защита применяется для ликвидации последствий короткого замыкания на трансформаторах начиная с мощности 6,3 MBА, иногда устанавливается и на маломощных силовых трансформаторах в том случае, если понижение напряжения идет большими перепадами. Минимальное значение – 1 MBА. Токовая отсечка без выдержки времени также применяется как защита от короткого замыкания со стороны питания и является альтернативой продольной дифференциальной защиты силовых трансформаторов.

Защита от всех видов повреждений внутри кожуха трансформатора обеспечивается газовой защитой. В соответствии с ГОСТ 11677—85 газовое реле устанавливается на всех масляных трансформаторах с расширителем начиная с мощности 1 MBА, сухие силовые трансформаторы оборудуются системой манометрической защиты.

Максимальная токовая защита ( МТЗ) силового трансформатора со стороны питания защищает от короткого замыкания на выводах и внутри трансформатора, при повреждениях шин щита НН и на отходящих линиях НН (низкое напряжение). Специальная токовая защита нулевой последовательности используется, если трансформатор низкого напряжения работает с глухозаземленной нейтралью. Специальная резервная максимальная токовая защита применяется при опасности межфазных коротких замыканий в силовых трансформаторах низкого напряжения в тех случаях, когда в зонах дальнего резервирования максимальной токовой защиты обнаружена недостаточная чувствительность к коротким замыканиям. И, наконец, максимальная токовая защита в одной фазе — от сверхтоков, обусловленных перегрузкой; устанавливается на трансформаторах начиная с мощности 0,4 MB-А, у которых возможно возникновение перегрузки после отключения параллельно работающего трансформатора или подключения дополнительной нагрузки в результате действия сетевого или местного устройства АВР.

Итак, для силовых трансформаторов больше 1 кВ релейная защита требуется для того, чтобы исключить выход из строя подстанции при следующих аварийных ситуациях:

  • 1. Появление сверхтоков в обмотках при перегрузке;
  • 2. Появление сверхтоков из-за внешних КЗ;
  • 3. Многофазные КЗ в обмотках и на их выводах;
  • 4. Однофазные замыкания на землю;
  • 5. Понижение уровня масла (вытекание масла из кожуха трансформатора);
  • 6. Внутренние повреждения трансформатора, в частности – витковых замыканий.

К числу внутренних повреждений силовых трансформаторов относится “пожар стали”. Это повреждение магнитопровода, связанное с замыканием листов стали, повреждением изоляции стяжных болтов, вообще возникновение любых замкнутых контуров в теле силового трансформатора. Вихревые потоки в новообразованных замкнутых контурах приводят к повышению температуры трансформатора, выделению газа серого или буроватого цвета, который образуется в газовом реле и довольно горюч – при поджоге воспламеняется. Трансформаторное масло начинает проходить через процесс крекинга – разложения: становится густым и темным, приобретает специфический резкий запах.

Важно при выполнении работ по защите учитывать слабые места трансформатора, чтобы выбрать оптимальный вариант. Для оценки потенциала аварийности, используются следующие критерии анализа и оценки: броски тока намагничивания при включении трансформатора под напряжение, влияние коэффициента трансформации и схем соединения обмоток трансформатора.

Деление защит трансформаторов на основные и резервные

Любой вид повреждения в трансформаторе несет потенциальную опасность, как целостности оборудования, так и надежности работы всей энергосистемы. Поэтому крайне важно грамотно отстраивать работу защит на электростанциях, тяговых и трансформаторных подстанциях, местных КТП и ТП. Для этой цели защита трансформатора условно подразделяется на две категории – основную и резервную.

Основная защита – это такой вид автоматики, который направлен на анализ внутреннего состояния трансформатора (обмоток, железа, дополнительного оборудования). Данный тип охватывает как само устройство, так и  прилегающие к нему шины, провода и т.д.

Резервная защита охватывает те нарушения в работе, которые происходят за пределами трансформатора, но могут непосредственно повлиять на его проводники и внутренние элементы. Это всевозможные перегрузки, замыкания и перенапряжения в линиях, на смежных устройствах и т.д.

Основные и резервные защиты
Рис. 2. Основные и резервные защиты

Релейная защита трансформаторов

Для предотвращения поломки трансформаторов используется достаточно большое количество релейных защит. Однако особого внимания заслуживает реле контроля уровня масла. Эта типология предусматривает мониторинг состояния изолирующей среды. Конструктивно реле представляет собой поплавок с контактами, который удерживается над контактами цепи срабатывания.

Если аварийный режим приведет к утечкам масла и последующему снижению ниже нормы, после чего может произойти поломка, произойдет отключение. Он может быть размещен в основном баке или иметь резервную релейную защиту в расширителе, которая заранее сигнализирует о начале процесса.

Релейная защита осуществляется с помощью вторичных реле прямого или косвенного действия. Вторичные реле подключены не напрямую, а через измерительные транс-форматоры тока и напряжения. РПД имеют две функции – электромагнита отключения выключателя и измерительного органа напряжения. РПД делятся на токовые реле прямого действия мгновенные и с выдержкой времени. Такие реле используются для трансформаторов на 6 и 10 кВ с выключателем высокого напряжения. Принцип их действия заключается в токовой отсечке и защите. Мощность силовых трансформаторов с РПД не должна превышать 1,6 MB-А, поскольку, в отличие от РКД (реле косвенного действия), реле прямого действия имеют меньшую чувствительность, и могут просто не успеть сработать.

Будет интересно➡  Пленочная защита трансформатора

Релейная защита с помощью реле косвенного действия строится на системе измерительных реле, которые непрерывно получают информацию от трансформаторов тока и напряжения (ТТ и ТН) на 10/0,4 кВ, 10/6 кВ, 10/10 кВ. Сложная функциональная схема удорожает производство, но многократно повышает эффективность работы. Принцип действия состоит в следующем: когда ток или напряжение на одном из реле силового трансформатора достигнет предела, установленного заранее, реле срабатывает и посылает сигнал на логическую часть системы. Предельное значение тока или напряжения называется “параметром срабатывания” или “установкой”. Предустановки реле на силовых трансформаторах должны быть изменены в соответствии с потребностями энергоустановки.

В отличие от аналоговой части, логический орган релейной защиты силовых трансформаторов от короткого замыкания и иных нарушений функционала работает по принципу алгоритмизации получаемых сигналов. В нее задаются четыре операнда: сложения, умножения, отрицания и задержки. Например, при максимальной токовой или дифференциальной защите трансформатора параллельное соединение замыкающих контактов 2-3 реле аналогично логическому элементу “ИЛИ”. При срабатывании одного из токовых реле пучка, включается защита трансформатора.

Умножение сигнала, или операнд “И”, аналогичен последовательному соединению токовых реле. Он используется в схеме максимальной токовой защиты при скачках напряжения. Чтобы защита сработала, необходимо превышение установки не только силы тока, но и напряжения. Более сложный логический элемент – “НЕ” – предупреждает срабатывание элемента системы при отказе другого элемента. В частности, при повреждении кожуха трансформатора срабатывает газовая, либо дифференциальная релейная защита. При этом необходимо исключить возможность повторного автоматического включения силового трансформатора, т.н. автоматическое повторное включение (АПВ). Для этого в систему реле включаются, наряду с контрольными, размыкающие реле, которые при срабатывании схемы отрицания включаются и разрывают выходную цепь устройства, исключаемого из схемы работы. Задержка срабатывания системы осуществляется с помощью реле времени.

Защита по максимальному току (МТЗ)

– срабатывает при превышении тока, проходящего через трансформатор (Рис. 1). Реле автоматики А0 и А1 срабатывают при токе, превышающем ток короткого замыкания для данной обмотки. Измерение тока осуществляется через трансформатор тока, включенного на две шины А и С.

При наличии межфазного замыкания на шине В через другие шины все равно протекает большой ток. Одно или два реле автоматики запускают цепь запуска реле времени Т.

Задержка реле времени требуется для лучшей селективности защиты – чем ближе трансформатор по линии к источнику энергии, тем меньшее должно быть время срабатывания. Реле времени через определенный промежуток времени запускает промежуточное реле

Релейная защита силовых трансформаторов

Рис.1

L, управляющей цепью реле отключения YAT. Реле отключения после срабатывания отключает входы и выходы трансформатора от источника и потребителя энергии и блокируется по цепям либо реле времени, либо промежуточного реле .

Разновидностью МТЗ является защита по току отсечки.

При удалении трансформатора по линии от источника энергии ток короткого замыкания становится меньшим из-за потерь на сопротивление.

Вместе с тем задержка по времени для МТЗ не позволяет быстро отключить трансформатор при внутренних межфазных замыканиях, приводящих к выходу трансформатора из строя. Конструктивно защита по токовой отсечке (Рис. 2) отличается от МТЗ отсутствием реле времени. Селективность реле достигается подбором тока срабатывания реле автоматики. Данный ток должен быть равным току КЗ на защищаемом участке.

Релейная защита силовых трансформаторов

Релейная защита силовых трансформаторов

Рис. 2

Релейная защита силовых трансформаторов

Рис.3

Срабатывание МТЗ по току обладает недостаточной чувствительностью в некоторых случаях, например при защите повышающего трансформатора. В данном случае защита запускается по напряжению (Рис. 3). Трансформаторы напряжения включенные между фазовых шин управляют работой реле автоматики А0 и А1. Срабатывание этих реле происходит при понижении порога напряжения короткого замыкания. Алгоритм работы аналогичен МТЗ, но сторона подключения – всегда источник энергии.

Для отключения трансформатора при однофазных и многофазных замыканий на землю служит защита от токов нулевой последовательности.

Для эффективно заземленных схем(Рис. 4 слева) трансформатор тока автоматики включается непосредственно на нейтраль. Превышение тока по нулевому проводу запускает через реле автоматики А реле времени Т, которое спустя некоторое время включает промежуточное реле L и устройство отключения YAT.

Для остальных случаев защита нулевой последовательности выполняется аналогично МТЗ, только трансформаторы тока подключаются одним выводом к заземлению (Рис.4 справа).

Релейная защита силовых трансформаторов

Рис. 4

Релейная защита должна удовлетворять нескольким требованиям. КЗ на одном участке не должно приводить к отключению всей цепи электроснабжения и осуществляться с минимальным временем. Измерительные цепи должны обеспечивать надежное срабатывание при заданных значениях тока или напряжения в защищаемых линиях.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Релейная защита кабельных, воздушных линий

В электросетях, работающих с заземленными нулевыми точками трансформаторов, защита должна действовать на отключения при междуфазных и однофазных коротких замыканиях. В сети, работающей с изолированными нулевыми точками трансформатора, замыкание на землю не вызывает нарушения работы потребителей электроэнергии. Поэтому в таких сетях защита от замыканий на землю действует на сигнал. Защиты линий отличаются большим многообразием и их выбор зависит от схемы и напряжения сети, а также от категорий потребителей. Для электроснабжения промышленных предприятий применяют линии с односторонним питанием, где используется максимально токовая защита, токовая отсечка, токовая поперечная дифференциальная защита параллельных линий, а также защиты от замыканий на землю.

Будет интересно➡  Режим холостого хода для трансформаторов

Релейная защита высоковольтных электродвигателей и конденсаторных установок

Электродвигатели мощностью до 300 кВт устанавливаемые на неответственных механизмах, могут защищаться высоковольтными предохранителями типа ПК. При кратности пускового тока, равной 6-7 и ниже, предохранители выбирают по кривым. По оси абсцисс – токи короткого замыкания, по оси ординат – время плавления выбранной вставки, которое больше времени, необходимого для разгона двигателя.

Защита конденсаторных батарей напряжением выше 1 кВ может выполнятся предохранителями типа ПК или реле мгновенного действия типа РТМ. Защита от замыканий на землю осуществляется токовым реле Т, действующим через промежуточное реле П на отключение.

Номинальные токи плавкой вставки предохранителя и ток срабатывания моксимально-токовой защиты выбирают с учетом следующих условий.

Iномк – номинальный ток одного конденсатора или группы

Iномб – номинальный ток всей батареи конденсаторов.

Защита конденсаторных батарей при однофазных замыканиях на землю устанавливается в двух случаях: когда токи замыкания на землю выше 20 А и когда защита от междуфазных замыканий не срабатывает.

Принцип работы ограничителя перенапряжений

Защитный эффект ОПН обусловлен тем, что при возникновении опасного перенапряжения для изоляции, из-за высокой нелинейности резисторов через ОПН протекает значительный импульсный ток, в результате чего Значение перенапряжения снижается до безопасного уровня для изоляции защищаемого оборудования.

При нормальной работе ток через разрядник имеет емкостный характер и равен десятым миллиамперам. Однако в случае перенапряжения разрядные резисторы проводят и ограничивают дальнейший скачок перенапряжения до безопасного уровня для изоляции защищенной электрической системы. Когда перенапряжение уменьшается, разрядник возвращается в непроводящее состояние.

Вольт-амперная характеристика разрядника состоит из 3-х участков (рис.5):

  1. – область малых токов;
  2. – область средних токов;
  3. – область сильных токов.

В первой области варисторы работают при рабочем напряжении, не превышающем максимально допустимое рабочее напряжение (сопротивление варисторов высокое, через них протекает очень небольшой ток утечки). Варистор переходит в среднетоковый режим при возникновении перенапряжения в сети. При этом на границе областей 1 и 2 происходит изгиб ВАХ, сопротивление варисторов значительно уменьшается, и через них проходит кратковременный импульс тока. Варистор поглощает энергию импульса и рассеивает ее в окружающее пространство в виде тепла. Из-за поглощения энергии импульс перенапряжения резко уменьшается. Третья зона для ограничителя – аварийная, сопротивление варисторов в нем снова резко возрастает.

Осциллограммы перенапряжений, возникающих при переключении взрывчатых веществ без разрядников и с разрядниками, показаны на рис. 7 и рис. 8.

Колебания перенапряжения при переключении взрывчатых веществ без разрядников.
Рис. 7. Колебания перенапряжения при переключении ВВ без ОПН.
Рис. 8. Колебания перенапряжения при коммутации ВВ с ОПН.

Вторая группа мероприятий – усиление изоляции входных цепей; установка емкостных колец и электростатических экранов (емкостная компенсация).

Емкостные кольца представляют собой открытые шайбовидные экраны из металлизированного электрокартона. Эти петли охватывают начало и конец обмотки, тем самым повышая кривую распределения начального напряжения, приближая ее к конечной кривой распределения.

Уменьшение неравномерности начального распределения напряжения и сходимость его с конечным распределением достигается за счет использования в трансформаторах дополнительных электростатических экранов в виде открытых металлических колец (витков), закрывающих начальную часть обмотки и соединенных с ее вводом. Этот экран создает дополнительные контейнеры, через которые загружаются поперечные контейнеры, минуя продольные контейнеры.

В результате начальная кривая распределения напряжения заметно сглаживается и становится почти такой же, как конечная кривая распределения для обмоток с заземленной нейтралью. Трансформаторы с изолированной нейтралью также могут быть оснащены электростатическими экранами, но в этом случае используются специальные импидорные устройства, подключаемые между нейтралью и землей. Это устройство содержит емкость, подключенную параллельно разряднику и реактору, которая во время волновых процессов заземляет нейтраль трансформатора, а на промышленной частоте имеет высокое сопротивление и практически изолирует нейтраль.

Защита от замыкания на землю

Максимальная токовая защита

∆t=t3 – t4 – ступень селективности.

Зона защиты – это тот участок, при повреждении которого должно произойти отключение.

Различают зону дальней защиты (зона 2), и основную зону.

Основная зона 1 – 2.

Вторая зона 2 – 3.

Третья зона 3 – 4.

Зона дальнего резервирования защиты

Токовая отсечка (мгновенное отключение без выдержки времени), отсутствует реле времени и селективность работы обеспечивается за счет ступенчатого выбора тока срабатывания защиты.

МТЗ и ТО применяются на линиях всех напряжений с односторонним источником питания.

Дифференциальная защита

Дифференциальная защита – это вид релейной защиты, применяемый на линиях высокого напряжения одинарных или параллельных с двухсторонними источником питания.

Для одинарных – продольная дифференциальная защита (ПДЗ):

  1. ПДЗ с циркулирующими токами.
  1. ПДЗ с уравновешенными напряжениями.

Щиты управления, их назначение и виды

Служат для управления и контроля за работой электрооборудования электростанций и подстанций, устройства дистанционного управления и сигнализации, измерительные приборы, аппараты релейной защиты и автоматики размещают на щитах управления и диспетчерских пунктах.

На теплоэлектростанциях, районных электростанциях и крупных подстанциях сооружается главный щит управления (ГЩУ).

Кроме ГЩУ на электростанциях устанавливают местные щиты управления, предназначенные для управления двигателями, электрическим и тепловыми оборудованием котлов, турбин, щиты автоматики.

Диспетчерские щиты:

Служат для управления системой электроснабжения на диспетчерских пунктах предприятия.

Они бывают планшетного и мозаичного типов. Преимуществом мозаичных щитов является возможность легкой замены отдельных их элементов при изменениях схемы контролируемого объекта.

Предыдущая
ТрансформаторыГазовые защиты трансформатора - что это?
Следующая
ТрансформаторыКак устроен сварочный трансформатор?
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять