Трансформаторы - что это такое, принцип работы, разновидности, обмотка

Что такое трансформатор?

Начиная с 19 века, трансформаторы начали приобретать все большее значение в электрике и электронике. Они остаются до сих пор обязательными элементами многих схем и есть практически в любом устройстве, которое потребляет электрический ток.

Принцип его работы основан на свойствах индукции. Трансформатор – это прибор, позволяющий регулировать ток, понижая его или наоборот, понижая. Был придуман он Фарадеем, почти 170 лет назад. Основные элементы, из которых состоит трансформатор – обмотки, которые и влияют на силу тока, тем самым изменяя его до требуемых значений.

В данной стать разобраны основные вопросы работы и устройства трансформатора. Также  статье есть видеоролик и скачиваемый файл по выбранной тематике.

Трансформатор
Трансформатор.

Что такое трансформатор

Трансформатор – это электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения при той же частоте. Действие трансформатора основано на использовании явления электромагнитной индукции.

Переменный электрический ток (ток, который изменяется по величине и по направлению) наводит в первичной катушке переменное магнитное поле. Это переменное магнитное поле, наводит переменное напряжение во вторичной обмотке. Величина напряжения ЭДС зависит от числа витков  в катушке и от скорости изменения магнитного поля.

Что такое трансформатор

Отношение числа витков первичной и вторичной обмоток определяет коэффициент трансформации:
k = w1 / w2;   где:

  • w1 — число витков в первичной обмотке;
  • w2 — число витков во вторичной обмотке.

Если число витков в первичной обмотке больше чем во вторичной — это понижающий трансформатор.

Если число витков в первичной обмотке меньше, чем во вторичной — это повышающий трансформатор.

Один и тот же трансформатор может быть как понижающим, так и повышающим, в зависимости от того на какую обмотку подается переменное напряжение.

Трансформаторы без сердечника или с сердечником из высокочастотного феррита или альсифера — это высокочастотные трансформаторы ( частота выше 100 килогерц). Трансформаторы с ферромагнитным сердечником (сталь, пермаллой, феррит) – это низкочастотные трансформаторы (частота ниже 100 килогерц)

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Высокочастотные трансформаторы используются в устройствах техники электросвязи, радиосвязи и др. Низкочастотные трансформаторы используются в усилительной технике звуковых частот, в телефонной связи. Особое место трансформаторы со стальным (набор из стальных листов) сердечником занимают в электротехнике. Развитие электроэнергетики напрямую зависит от мощных, силовых трансформаторов. Мощности силовых трансформаторов имеют величины от нескольких ватт до сотен тысяч киловатт и выше. Классификация типов трансформаторов представлена в таблице ниже.

Типы трансформаторов
Таблица характеристик трансформаторов по их основным типам.

Что такое силовой трансформатор

На замкнутый сердечник (магнитопровод), набранный из стальных листов, надевают две или больше, обмоток, одна из которых соединяется с источником переменного тока. Другая (или другие) обмотка соединяется с потребителем электрического тока – нагрузкой. Переменный ток, проходящий по первичной обмотке, создает в стальном сердечнике магнитный поток, который наводит в каждом витке обмотки – катушки переменное напряжение. Напряжения всех витков складываются в выходное напряжение трансформатора.  Форма сердечника – магнитопровода, может быть Ш – образной, О – образной и тороидальной, в виде тора. Таким образом в силовом трансформаторе электрическая мощность из первичной обмотки передается во вторичную обмотку через магнитный поток в магнитопроводе.

Будет интересно➡  Масляные трансформаторы – что это такое, устройство и принцип работы

силовой трансформатор

Потребителей электрической энергии очень много: электрическое освещение, электронагреватели, радио и теле аппаратура, электродвигатели и многое другое. И все эти приборы требуют различные напряжения (переменные и постоянные) и разные мощности. Проблема эта легко решается с помощью трансформатора. Из бытовой сети с переменным напряжением 220 вольт можно получить переменное напряжение любой величины и , если необходимо, преобразовать его в постоянное напряжение.

Коэффициент полезного действия трансформатора довольно велик, от 0,9 до 0,98 и зависит от потерь в магнитопроводе и от магнитных полей рассеяния.
От величины электрической мощности Р зависит площадь поперечного сечения магнитопровода S.
По значению площади S определяется, при расчетах трансформатора, количество витков w на 1 вольт:

w = 50 / S.

Мощность трансформатора Рс выбирается из требуемой величины нагрузки Рн плюс величина потерь в сердечнике. 

При расчете трансформатора с определенной степенью точности можно считать, что мощность нагрузки во вторичной обмотке Pн = Uн * Iн и мощность потребляемая из сети в первичной обмотке Pc = Uc * Ic приблизительно равны. Если  потерями в сердечнике  пренебречь, то получается равенство: k = Uс / Uн = Iн / Iс.

Трансформаторы и их применение
Трансформаторы и их применение/

Трансформаторы и их применение

Трансформатор – это устройство, служащее для повышения или понижения переменного напряжения без изменения его частоты и практически без потерь мощности. Трансформатор состоит из двух или более катушек, надетых на общий сердечник. Катушка, которая подключается к источнику переменного напряжения, называется первичной, а катушка, к которой присоединяется нагрузка (потребители электрической энергии), – вторичной. Сердечники трансформаторов изготавливаются из электротехнической стали и набираются из отдельных изолированных друг от друга пластин (для уменьшения потерь энергии вследствие возникновения в сердечнике вихревых токов).

Трансформаторы и их применение

Катушки трансформатора, как правило, содержат разное количество витков, причем большее напряжение оказывается приложено к катушке с большим числом витков. Если трансформатор используется для повышения напряжения, то обмотка с меньшим числом витков подключается к источнику напряжения, а к обмотке с большим числом витков присоединяется нагрузка. Для понижения напряжения все делается наоборот. При этом не следует забывать, что подавать на первичную обмотку можно напряжение не больше номинального (того, на которое она рассчитана).

Трансформаторы и их применение

Коэффициентом трансформации называют отношение числа витков в первичной обмотке к числу витков во вторичной обмотке. Он равен также отношению ЭДС в обмотках.  При отсутствии потерь в обмотках коэффициент трансформации равен отношению напряжений на зажимах обмоток: k=U1/U2. Для понижающего трансформатора коэффициент трансформации больше 1, а для повышающего – меньше 1. Принцип работы трансформатора основан на явлении электромагнитной индукции. При протекании переменного тока через первичную катушку вокруг нее возникает перемененное магнитное поле и магнитный поток, который пронизывает также и вторую катушку. В результате во вторичной катушке появляется вихревое электрическое поле и на ее зажимах возникает ЭДС индукции.

Трансформатор характеризуется коэффициентом полезного действия, равным отношению мощности, выделяющейся во вторичной катушке, к мощности, потребляемой первичной катушкой от сети. У хороших трансформаторов КПД составляет 99 – 99,5%. Важным свойством трансформатора является его способность преобразовывать сопротивление нагрузки. Рассмотрим трансформатор с КПД приблизительно равным 100%. В этом случае мощность, выделяющаяся во вторичной цепи трансформатора, будет равна мощности, потребляемой первичной обмоткой от источника напряжения. Для такого трансформатора мощность, потребляемая от источника напряжения, будет чисто активной. Мощность в первичной цепи трансформатора P1=(U12)/R1, а во вторичной цепи P2=(U22)/R2.

Будет интересно➡  Необходимые условия для выполнения параллельной работы трансформаторов

Так как P1=P2 и U1=kU2 , то R1=k2R2.

Таким образом, нагрузка сопротивлением R2, подключаемая к источнику переменного напряжения через трансформатор, по мощности будет эквивалентна нагрузке сопротивлением R1, подключаемой без трансформатора. Для регулировки переменного напряжения широко применяются лабораторные автотрансформаторы. Автотрансформаторы рассчитаны на подключение к сети переменного напряжения 220 В или 127 В. Как правило, выходное напряжение автотрансформатора регулируется плавно до 250 В.

Обмотка трансформатора выполнена изолированным проводом в один слой. На участках обмотки, которых касается подвижный контакт с угольной вставкой, изоляция очищена. При перемещении контакта угольная вставка закорачивает виток провода. Однако вследствие небольшого напряжения на одном витке и заметного сопротивления угольной вставки через замкнутый виток протекает допустимый ток.

Первичная обмотка автотрансформатора является частью его вторичной обмотки и поэтому между первичной и вторичной обмоткой трансформатора имеется гальваническая связь. К вторичной обмотке автотрансформатора нельзя непосредственно подключать потребители, один из проводов которых может оказаться соединенным с землей. Такое подключение приведет к аварии или несчастному случаю. При работе с автотрансформатором запрещается заземлять вторичную цепь. Рассмотрим кратко простейший расчет маломощных трансформаторов бытовой радиоаппаратуры.

Мощность трансформатора (в Вт) численно равна квадрату площади (в см2) поперечного сечения среднего стержня магнитопровода. Зная номинальную мощность трансформатора, можно  найти ток в первичной обмотке при номинальной нагрузке во вторичных обмотках. Диаметр провода обмотки выбирается из расчета (2,5-3)А/мм2 поперечного сечения провода. Для стандартных магнитопроводов, применяемых для изготовления трансформаторов, число витков на 1 вольт примерно равно частному от деления 50 на площадь поперечного сечения центрального стержня магнитопровода, выраженную в см2. Однако в зависимости от качества магнитопровода коэффициент может изменяться от 35 до 65.

Трансформатор
Трансформатор.

Полное сопротивление катушки индуктивности с ферромагнитным сердечником зависит от силы протекающего через нее тока. Сопротивление катушки в зависимости от силы протекающего тока сначала увеличивается, достигает максимального значения, а затем уменьшается. Нелинейное возрастание тока холостого хода в зависимости от приложенного к первичной обмотке напряжения начинается примерно с 0,8Uном. Номинальное напряжение первичной обмотки трансформатора выбирают так, чтобы ток холостого хода составлял 5-10% от номинального тока. При напряжении 1,1Uном ток холостого хода не должен превышать 20-25% номинального тока нагруженного трансформатора.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.

Режимы работы трансформатора
Режимы работы трансформатора.

Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

Будет интересно➡  Устройство тороидального трансформатора и его преимущества

Виды трансформаторов

В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В. Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор. Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.

Виды трансформаторов
Виды трансформаторов

Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины. Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем. Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.

Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.

Заключение

В данной статье были рассмотрены основные особенности трансформаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике Что такое трансформатор. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.domasniyelektromaster.ru

www.td-automatika.ru

www.ivatv.narod.ru

www.etcenter.ru

www.www.joyta.ru

Предыдущая
ТрансформаторыТрансформаторы для светодиодных лент, мнение специалистов
Следующая
ТрансформаторыЧто такое трансформаторная подстанция
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять