Сила магнитной индукции (формулы единицы)

Что такое магнитная индукция и магнитный поток

Магнитное поле, так же как и электрическое поле, является одной из сторон электромагнитного поля и представляет собой один из видов материи. Оно возникает, например, при движении электрических зарядов и, в частности, вокруг проводов с током.

Магнитное поле обладает энергией называемой энергией магнитного поля, которая проявляет себя различным образом, например в действии одного провода с током на другой провод с током, находящийся в магнитном поле первого, или в действии магнитного поля проводника с током на магнитную стрелку.

Физический смысл магнитной индукции

Прежде, чем перейти к рассмотрению формулы магнитной индукции, нужно выяснить, чем объясняется возникновение самого явления в системе. Соленоид не является плоским элементом и включает в себя спираль из проводника (металла). При отсутствии воздействующих на него магнитных явлений находящиеся в кристаллической решетке материала спирали электрозаряды ведут себя статично. Когда в соленоиде движется постоянный магнитный элемент, формирующий поле, под его влиянием движутся и заряженные частицы, тогда в индуктивном элементе появляется электрический ток, сила которого определяется характеристиками магнитного и спирального элемента и тем, как быстро происходит движение.

Важно! Имеющие одинаковую ориентацию поля суммируются, образуя общее поле. Когда передвижение заряженных частиц в соленоиде прекращается, сердечник перестает проявлять магнитные характеристики, если он выполнен из мягкого металла (к стальным изделиям это правило не относится).

Чем характеризуется магнитная индукция

Более мелкой единицей магнитного потока, не относящейся к системе СИ, является максвелл

1 мкс = 10-8вб = 1 гс•см2.

Так как магнитная индукция характеризуется числом магнитных линий, проходящих через единицу площади поверхности, перпендикулярной направлению поля, то магнитный поток будет характеризоваться числом линий, проходящих через площадь S.

Единицы измерения магнитной индукции

В международной системе единиц (СИ) сила измеряется в ньютонах, ток — в амперах, длина — в метрах, поэтому единица измерения магнитной индукции

[B] = [F : (Il)] = н : (a • м) = дж/м : (a • м) = (в • k) : (a • м2) = (в • а • сек) : (a • м2) = (в • сек) : м2

Единица вольт-секунда называется вебер (вб), а вебер, деленный на квадратный метр, — тесла (тл),

таким образом:

[B] = вб : м2 = тл

Кроме единицы тесла, иногда применяется гаусс (гс) — единица магнитной индукции, не принадлежащая к системе СИ, при этом

1 гс — 10-4 тл, или 1 тл = 104 гс.

Провод с током в магнитном поле

Рис. 3. Провод с током в магнитном поле.

Магнитная индукция — векторная величина. Направление вектора магнитной индукции совпадает с направлением поля в данной точке.

Магнитное поле, во всех точках которого векторы магнитной индукции одинаковы по величине и параллельны друг другу, называется однородным.

Линии магнитной индукции можно использовать не только для указания направления поля, но и для характеристики его интенсивности.

Для этого условно через единичную площадку, перпендикулярную к направлению поля, проводят число линий, равное или пропорциональное величине магнитной индукции в данном месте поля.

Произведение магнитной индукции В на площадь S, перпендикулярную к вектору магнитной индукции, называется магнитным потоком, т. е.

Ф = BS.

Формула магнитной индукции:

Формулы вычисления магнитной индукции B = Mmax/IS
Формула магнитной индукции: B = Mmax/IS

Где:

  • B — индукция магнитного поля (в Тл)
  • Mmax — максимальный крутящий момент магнитных сил, приложенных к рамке (в Нм)
  • l — длина проводника (в м)
  • S — площадь рамки (в м²)

Формула для определения модуля магнитной индукции

Если проводник расположен перпендикулярно линиям магнитной индукции Сила и закон Ампера - формулы и определение с примерами
поле действует на проводник с максимальной силой:

Сила и закон Ампера - формулы и определение с примерами

Отсюда получаем формулу для определения модуля магнитной индукции:

Сила и закон Ампера - формулы и определение с примерами

Обратите внимание! Значение магнитной индукции не зависит ни от силы тока в проводнике, ни от длины проводника, а зависит только от свойств магнитного поля.

Например, если уменьшить силу тока в проводнике, то уменьшится и сила Ампера, с которой магнитное поле действует на проводник, а вот значение магнитной индукции останется неизменным.

В СИ единица магнитной индукции — тесла (Тл), единица силы — ньютон (Н), силы тока — ампер (А), длины — метр (м), поэтому:

Будет интересно➡  Как устроен однополупериодный выпрямитель и где применяется

Сила и закон Ампера - формулы и определение с примерами

1 Тл — это индукция такого однородного магнитного поля, которое действует с максимальной силой 1 Н на проводник длиной 1 м, в котором течет ток силой 1 А.

  • Заказать решение задач по физике

Пример №3

Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.

Анализ физической проблемы. Около любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как будут вести себя проводники.

Решение

Решая задачу, выполним пояснительные рисунки: изобразим проводники А и В, покажем направления тока в них и т. д.

Выясним направление силы Ампера, которая действует на проводник А, находящийся в магнитном поле проводника В.

  1. С помощью правила буравчика найдем направление линий магнитной индукции магнитного поля, созданного проводником В(рис. 1, а). Выясняется, что вблизи проводника А магнитные линии направлены к нам (обозначено «•»).
  2. Воспользовавшись правилом левой руки, определим направление силы Ампера, действующей на проводник А со стороны магнитного поля проводника В (рис. 1, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 1

3. Приходим к выводу: проводник А притягивается к проводнику В.

Теперь выясним направление силы Ампера, которая действует на проводник В, находящийся в магнитном поле проводника А.

1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рис. 2, а). Выясняется, что вблизи проводника В магнитные линии направлены от нас (обозначено Сила и закон Ампера - формулы и определение с примерами

2) Определим направление силы Ампера, действующей на проводник В (рис. 2, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 2

3) Приходим к выводу: проводник В притягивается к проводнику А.

Ответ: два параллельных проводника, в которых текут токи одного направления, притягиваются.

Пример №4

Прямой проводник (стержень) длиной 0,1 м и массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитным линиям поля (рис. 3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 3

Ток какой силы и в каком направлении следует пропустить по стержню, чтобы стержень не давил на опору (завис в магнитном поле)?

Анализ физической проблемы. Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при условиях: 1) сила Ампера будет направлена противоположно силе тяжести (то есть вертикально вверх); 2) значение силы Ампера будет равно значению силы тяжести: Сила и закон Ампера - формулы и определение с примерами

Дано:

Сила и закон Ампера - формулы и определение с примерами

Найти:

Сила и закон Ампера - формулы и определение с примерами

Поиск математической модели, решение

1. Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90° большой палец был направлен вертикально вверх. Четыре вытянутых пальца укажут направление от нас. Следовательно, ток в проводнике нужно направить от нас.

2. Учитываем, что Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами
где Сила и закон Ампера - формулы и определение с примерами

Следовательно, Сила и закон Ампера - формулы и определение с примерами

Из последнего выражения найдем силу тока: Сила и закон Ампера - формулы и определение с примерами

Проверим единицу, найдем значение искомой величины.

Вспомним: Сила и закон Ампера - формулы и определение с примерами

Ответ: Сила и закон Ампера - формулы и определение с примерами
от нас.

Подводим итоги:

Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера находят по формуле: Сила и закон Ампера - формулы и определение с примерами
где В — индукция магнитного поля; I — сила тока в проводнике; Сила и закон Ампера - формулы и определение с примерами
— длина активной части проводника; Сила и закон Ампера - формулы и определение с примерами
— угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяют по правилу левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец укажет направление силы Ампера.

Другие формулы, где встречается B

Эти формулы также можно использовать для её расчёта.

Сила Ампера

Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:

основные формулы электричество и магнетизм

Это и есть сила Ампера. Угол альфа– угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.

Правило левой руки для силы Ампера

Характеристика силы действующей на проводник с током

Между полюсами подковообразного постоянного магнита подвесим на тонких и гибких проводах прямой алюминиевый проводник (рис. 4.1, а). Если через проводник пропустить ток, проводник отклонится от положения равновесия (рис. 4.1, б). Причина такого отклонения — сила, действующая на проводник с током со стороны магнитного поля. Доказал наличие этой силы и выяснил, от чего зависят ее значение и направление, А. Ампер. Именно потому эту силу называют силой Ампера.

Будет интересно➡  Закон сохранения электрического заряда

Рис. 4.1. Опыт, демонстрирующий действие магнитного поля на алюминиевый проводник: при отсутствии тока магнитное поле на проводник не действует (а); если в проводнике течет ток, на проводник действует магнитное поле и проводник отклоняется (б)

Сила Ампера — это сила, с которой магнитное поле действует на проводник с током.

Сила Ампера прямо пропорциональна силе тока в проводнике и длине активной части проводника (то есть части, расположенной в магнитном поле). Сила Ампера увеличивается с увеличением индукции магнитного поля и зависит от того, под каким углом к линиям магнитной индукции расположен проводник.

Значение силы АмпераСила и закон Ампера - формулы и определение с примерами
вычисляют по формуле:

Сила и закон Ампера - формулы и определение с примерами

где Сила и закон Ампера - формулы и определение с примерами
— магнитная индукция магнитного поля; Сила и закон Ампера - формулы и определение с примерами
— сила тока в проводнике; Сила и закон Ампера - формулы и определение с примерами
— длина активной части проводника; Сила и закон Ампера - формулы и определение с примерами
— угол между направлением вектора магнитной индукции и направлением тока в проводнике (рис. 4.2).

Обратите внимание! Магнитное поле не будет действовать на проводник с током Сила и закон Ампера - формулы и определение с примерами
если проводник расположен параллельно магнитным линиям поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.2. Угол Сила и закон Ампера - формулы и определение с примерами
— это угол между направлением вектора магнитной индукции и направлением тока в проводнике

Чтобы определить направление силы Ампера, используютправило левой руки:

Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец укажет направление силы Ампера (рис. 4.3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.3. Определение направления силы Ампера по правилу левой руки

Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа– это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

магнетизм основные понятия и формулы

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

Определение направления силы Лоренца

Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

формулы по теме магнетизм

Магнитный поток

Формулы вычисления магнитной индукции Ф = BS cosα
Магнитный поток: Ф = BS cosα

Где:

  • Ф — магнитный поток (в Вб — вебер)
  • B — индукция (в Тл)
  • S — площадь рамки (в м²)
  • α — угол между вектором В и одним из направлений (силы тока, скорости, или др.; измеряется в рад. или град.))

Вектор магнитной индукции

Определение

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как →B. Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B=FAmaxIl..

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Сила магнитной индукции (формулы единицы)

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Сила магнитной индукции (формулы единицы)

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Частные случаи формул для вычисления величины вектора магнитной индукции

Формула для вычисления модуля вектора индукции в центре кругового витка с током (I):

Будет интересно➡  Все про повторный инструктаж по охране труда: порядок проведения

[B=frac{{mu }_0mu }{2}frac{I}{R} qquad(6)]

где R – радиус витка.

Модуль вектора магнитной индукции поля, которое создает бесконечно длинный прямой проводник с током:

[B=frac{{mu }_0mu }{2pi }frac{I}{r} qquad(7)]

где r – расстояние от оси проводника до точки, в которой рассматривается поле.

В средней части соленоида магнитная индукция поля вычисляется при помощи формулы:

[B={mu }_0mu nI qquad(8)]

где n – количество витков соленоида на единицу длины; I – сила тока в витке.

Действие магнитного поля на рамку с током

Когда в наружное поле помещают рамку из проводникового материала (проволоки), и в ней создается электроток, со стороны поля на нее будет воздействовать сила Ампера. При однородности поля равнодействующая амперовых сил получится нулевой. При этом их момент таковым не будет. Вследствие этого рамка будет поворачиваться вокруг своей оси. Индукционный вектор будет образовывать прямой угол с рамочной плоскостью.

Зависимость магнитной индукции

На электромагнитную индукцию абсолютно не влияют, ни сила тока, ни длина проводника. Она находится в прямой зависимости и связи, только с магнитным полем. Таким образом, при уменьшении силы тока в проводнике, без изменения каких-либо других показателей, происходит уменьшение не индукции, прямо пропорционально связанной с силой тока, а той силы, с которой магнитное поле воздействует на проводник. При этом, значение самой магнитной индукции остается постоянным. Благодаря этим качествам, электромагнитная индукция выступает в роли количественной характеристики магнитного поля.
Индукция магнитного поля
Измерение магнитной индукции производится в теслах, по формуле: 1 Тл=1 Н/(А*м). Физическую зависимость этой величины от различных факторов, можно определить в ходе проведения несложного эксперимента. Необходимо взять весы, где на одной стороне прикрепляется проводник, а на другой стороне расположены гири. Проводник находится в постоянном электромагнитном поле, при этом, его масса и вес гирь имеют одинаковое значение.

Сила магнитной индукции (формулы единицы)

После уравновешивания весов, по проводнику пропускается электрический ток. Вокруг него происходит образование магнитного поля, определяемое в соответствии с правилом правой руки. В результате, наблюдается взаимодействие полей постоянного магнита и самого проводника. При этом, равновесие весов будет нарушено. Из-за протекания тока, сторона весов с проводником начинает опускаться. Для того, чтобы вычислить силу воздействия поля на этот проводник, нужно уравновесить его с помощью гирь. Сила их тяжести рассчитывается по специальной формуле, и будет равняться силе магнитного поля, воздействующей на проводник с током. Соотношение этой силы с длиной проводника и силой тока является постоянной величиной. Данная количественная характеристика находится в зависимости только от поля и представляет собой ни что иное, как модуль вектора магнитной индукции.

Изменения в магнитосфере Земли

Характеристики земного МП меняются, в основном, вследствие того, что оно смещается относительно земного шара. Люди привыкли, что северный конец стрелы должен устремляться к северу. При обратной намагниченности диполя планеты ситуация будет противоположной. В обсерваториях фиксируются данные о состоянии МП планеты, и на их основе создаются геомагнитные карты. Они демонстрируют наличие отклонений в напряженности МП и положении силовых линий в некоторых уголках Земли. Эти явления называют магнитными аномалиями. Иногда их используют как индикаторы местоположения определенных ископаемых ресурсов.

Связь между индукцией и степенью напряженности поля широко используется в расчетах. Она позволяет вывести выражения для нахождения значения индукции в проводниках разных форм, сделанных из материалов с различными показателями магнитной проницаемости.

Явление электромагнитной индукции

Явление электромагнитной индукции было открыто английским ученым.

Электромагнитная индукция и магнитная индукция: какая между ними разница?

Электромагнитная индукция — это производство электродвижущей силы, создаваемой в результате относительного движения между магнитным полем и проводником.

Магнитная индукция может производить постоянный магнит, но может и не производить.

Электромагнитная индукция создаёт ток, но таким образом, что этот созданный ток противодействует изменению магнитного поля.

В электромагнитной индукции используются магниты и электрические цепи, а в магнитной индукции используются только магниты и магнитные материалы.

Пример определения магнитного поля

Поместим в магнитное поле перпендикулярно его направлению участок прямолинейного провода длиной l, по которому проходит ток I (рис. 3).

Правило буравчика для кольцевого тока

Из опыта можно убедиться, что на участок провода будет действовать сила F, по величине пропорциональная току, длине участка проводника и интенсивности магнитного поля, которая характеризуется величиной магнитной индукции В.

Таким образом, сила

F = IBl

Рис. 2. Правило буравчика для кольцевого тока.

Из написанного следует, что

B = F : (Il)

т. е. магнитная индукция измеряется отношением механической силы, действующей на участок провода, по которому проходит ток, к произведению тока и длины участка провода, причем провод должен быть расположен перпендикулярно направлению поля.

Предыдущая
ТеорияВатт - единица измерения мощности
Следующая
ТеорияЧто такое чередование фаз по цвету и как его проверить?
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять