Что такое изолированная нейтраль и где она используется

Что такое изолированная нейтраль?

Что это такое

Определение понятия «изолированная нейтраль» приведено в главе 1.7. ПУЭ, в пункте 1.7.6. и ГОСТ Р 12.1.009-2009. Где сказано, что изолированной называется нейтраль у трансформатора или генератора, не присоединенная к заземляющему устройству вообще, или, когда она присоединена через приборы защиты, измерения, сигнализации.

Что такое изолированная нейтраль?

Нейтралью называется точка, в которой соединены обмотки у трансформаторов или генераторов при включении по схеме «звезда».

Среди электриков есть заблуждение о том, что сокращенное название изолированной нейтрали – это система IT, по классификации п. 1.7.3. Что не совсем верно. В этом же пункте сказано, что обозначения TN-C/C-S/S, TT и IT приняты для сетей и электроустановок напряжением до 1 кВ.

В той же главе 1.7 ПУЭ есть пункт 1.7.2. где сказано, что в отношении мер электробезопасности электроустановки делятся на 4 типа — изолированную или глухо заземленную до 1 кВ и выше 1 кВ.

Таким образом есть некоторые отличия в безопасности и применении такой сети в разных классах напряжения и называть линию 10 кВ с изолированной нейтралью «система IT» по меньше мере неправильно. Хотя схематически – почти тоже самое.

Чаще всего потребитель сталкивается с заземляющей нейтралью. Она присоединяется к заземляющему контуру непосредственно или через аппарат с малым электрическим сопротивлением. Изолированная нейтраль – это нейтраль, которая не присоединена к заземлению либо же подключается через устройство с большим диэлектрическим сопротивлением.
Что такое изолированная нейтраль?

Во время работы сети постоянно возникают утечки тока. Они становятся причиной 2 типов замыканий: на землю и на корпус. Первый вариант – это случайное соединение частей приборов, находящихся под напряжением, с частями, не изолированными от земли. Второй – контакт частей энергоустановки, находящихся под напряжением, с частями, не находящимися под напряжением в нормальном режиме.

  • Если ток замыкания прибора на землю и корпус не превышает 500 А, он называется установкой с малыми токами замыкания на землю. С такими токами и работают линии с напряжением до 1 кВт и выше с изолированной нейтралью трансформатора или генератора. Чаще всего это 3-фазные системы с линейным напряжением в 220,380 и 660 В.
  • Если ток замыкания на корпус или землю больше 500 А, это установка с большими токами замыкания. Такое оборудование работает с глухозаземленной нейтралью при напряжении 110 кВ и выше.
    Что такое изолированная нейтраль?

Режим работы нуля определяет уровень изоляции, величину напряжения и тока, условия включения и выключения защитного реле, выбор обслуживающей аппаратуры и прочее.

По уровню безопасности все установки разделяются на сети до 1000 В включительно и свыше 1000 В.

Определение изолированной нейтрали и терминология

Изолированный

Термин «изолированной центральной нейтрали» описан в ПУЭ, главе 1,7, пункт 1,7,6, а также в ГОСТ 2009-009, 12,1. В этих законодательных источниках четко прописана формулировка, что изолированная нейтраль – это центральная нейтраль генератора или трансформатора электросети, которая не присоединяется к устройству заземления или присоединяется, но через приборы безопасности или аварийной сигнализации.

Также центральной изолированный нейтралью может выступать определенная точка, которая является центром соединения жил по схеме «звезды».

Изолированный нейтраль

Некоторые, даже профессиональные, специалисты по электрике убеждены, что изолированная  нейтраль – это система заземления IТ, которая описана в ПУЭ 1,7,3.

Однако это ложная информация и глубокое заблуждение, поскольку в том же пункте ПУЭ сказано, что данная система используется исключительно для электросетей до одного кВ.

Кроме того, в пункте 1,7,2 сообщается, что в зависимости от безопасности изолированные установки разделяются на четыре категории от изолированных до глухо заземленных, а также до одного кВ и выше.

Исходя из вышеописанных пунктов изолированной ПУЭ следует вывод: изолированная центральная нейтраль и система глухого заземления – это абсолютно разные устройства с разными типами применения.

Изолированная нейтраль в электрических сетях

Изолированная нейтраль. достоинства и недостатки

Применяется в распределительных сетях 6-35 кВ. Что касается физических проявлений изолированной нейтрали, напряжение возрастает до линейного. Основное назначение подобного типа связывается со следующими моментам:

  1. Сеть не отключается, продолжает работать. Потребители на фазах без замыкания используют однофазные бытовые приборы до отключения линии. Перекос по напряжению в сетях 0,4 кВ отсутствует, в сетях 6-35 увеличивается до линейного.
  2. Реализация таких сетей в разы дешевле в обслуживании, что позволяет экономить значительные средства на распределение электрической энергии.
  3. Высокая надежность работы, особенно на воздушных линиях электропередач. Падение ветки не отключит фидер и обеспечит его работоспособность.

Главными недостатками изолированных сетей считаются:

  1. При однофазном замыкании сеть продолжает работать, защиты не срабатывают, что иногда приводит к несчастным случаям с населением.
  2. Наличие феррорезонансных процессов и возникновение реактивной мощности, которая ухудшает качество электрической энергии.

Сети до 1 кВ

Что такое изолированная нейтраль?
Провод сети с изолированной нейтралью можно рассматривать как протяженный конденсатор. На воздушных контурах обкладками конденсатора выступают проводник и земля, а диэлектриком становится воздух. При укладке в землю обкладками являются жила и металлическая оболочка, а диэлектриком – изоляция. По отношению к земле провод обладает некоторым сопротивлением и некоторой электрической емкостью. Это означает, что при штатном режиме работы через землю и сопротивление изоляционной оболочки протекает ток утечки, а через конденсаторы – емкостные токи.

Будет интересно➡  Как прозвонить электродвигатель мультиметром

В исправной сети геометрическая сумма токов равна нулю. Сами токи невелики и на работу электроустановок влияния не оказывают.

  • Если возникает замыкание одной из фаз на землю, последняя превращается в «поврежденную фазу», а между работающими фазами возникает линейное напряжение. Под его влиянием через места замыкания и землю протекают токи утечки и емкостные токи рабочих фаз. Величина тока замыкания увеличивается в 3 раза.
  • Если замыкание не металлическое, в этом месте появляется перемежающаяся дуга. Она гаснет и загорается при силе от 5 до 10 А и часто приводит к глубокому пробою изоляции. А так как неметаллическое замыкание – это чаще всего контакт человека с корпусом прибора или проводом, это явление представляет еще большую опасность.

В сетях с изолированной нейтралью для уменьшения токов замыкания нейтрали заземляют через дугогасящие катушки. Но такой вариант неприменим в электроустановках, где требования к безопасности повышенные – в угольных шахтах, на торфоразработках.

Допускается работа электросетей с однофазным замыканием в течение не более 2 часов. Затем необходимо отключить источник питания и найти повреждение.

Сфера применения

Что такое изолированная нейтраль?
Сеть с изолированной нейтралью применяется на участках, где требуется поддерживать высокую безопасность, но не останавливать работу при однофазном замыкании:

  • шахты, рудники, карьеры;
  • морские суда, газо- и нефтедобывающие платформы, где заземление невозможно;
  • метро;
  • цепи управления и освещения подъемных механизмов, например, кранов;
  • дизельные, газовые, бензиновые генераторы, в том числе и бытовые.

Изолированную нейтраль допускается использовать, когда вторичные обмотки трансформатора соединены по схеме треугольника. Такое же решение используется при невозможности отключить электричество при аварии.

Плюсы и минусы сетей до 1кВ с изолированной нейтральюВ режиме изолированной нейтрали исчезает необходимость отключать контур при однофазном замыкании на землюВозможность передавать энергию по минимальному количеству проводовОпасность использования при замыкании повышаетсяУсложняется обнаружение первичного короткого замыкания, так как при нем не возникает искр

Сети свыше 1 кВ

К сетям с напряжением выше 1 кВ с изолированной нейтралью относят сети от 3 до 33 кВ. Однако в отличие от линий с напряжением до 1 кВ, здесь нельзя пренебрегать емкостной проводимостью фаз. При замыкании на землю емкостный ток неповрежденной фазы тоже увеличивается в 3 раза по сравнению с обычным током. Абсолютное значение не так уже велико. Например, при протяженности воздушной линии в 10 км и с напряжением в 10 кВ емкостный ток равен 0,3 А. Тем не менее такие сети оборудуются автоматическим контролем изоляции. Последний срабатывает при уменьшении сопротивления обмотки на фазе ниже установленной величины.

Чтобы предупредить появление перемежающиеся дуг, изолированная нейтраль трансформатора подключается через дугогасящий реактор.

Организация сетей с напряжением в 3–35 кВ с изолированной нейтралью обусловлена возможность продолжить работу электроприемников в течение 1–2 часов. Однако линии остаются опасными для человека.

Сфера применения

Что такое изолированная нейтраль?
Сеть с напряжением до 33 кВ относится к линии средних напряжений. Она востребована:

  • при обслуживании горных разработок, электровозов и троллейвозов;
  • в подземно-промышленном транспорте;
  • при обслуживании электролизных установок;
  • ЛЭП со средним напряжением.

Практически все сети, обслуживающие районные города и поселки, относятся к средним.

Плюсы и минусы сетей до 33кВ с изолированной нейтральюЭлектролиния может работать до 2 часов в условиях замыкания на землюНа поврежденных участках возникает относительно небольшой токЭлектрооборудование в сети нужно изолироватьПри длительном замыкании возрастает риск поражения человека токомПри однофазном замыкании неадекватно работает реле защитыИз-за возникновения дуговых напряжений ускоряется износ изоляцииНа участках, где наблюдаются дуговые перенапряжения, возрастает риск пробояСложно найти неисправности в контуре

Чем система IT принципиально отличается от всех других систем?

Отличается она тем, что в ней нет ноля. Совсем нет. Никак нет. Вообще нет. 🙂

Что это значит практически?

Значит это то, что если у вас есть сеть 3 фазы 0,4 кВ, то вы НЕ СМОЖЕТЕ получить однофазное 230 В, как все привыкли, взяв один провод из фазы, а второй из нейтрали или из заземления. Нейтрали нет, а к проводу заземления подключаться НЕЛЬЗЯ, ЗАПРЕЩЕНО! Иначе у вас будет система не IT, а TT

Как же подключить однофазную нагрузку в системе с изолированной нейтралью?

Здесь варианта два:

1)       На нефтяных судах часто есть две параллельные трехфазные линии, линия 0,4 кВ 3 фазы и 230 В 3 фазы. Чтобы подключить прибор, предназначенный для использования в сети 230В, нужно включить его в сеть 230 В МЕЖДУ ДВУМЯ ФАЗАМИ, т.е. в линейное напряжение.

То есть, использовать не схему “звезда”, как это делается обычно для получения 220В, а схему “треугольник”, подключив нагрузку 220 В (которую язык почему-то не поворачивается уже назвать “однофазной”) к одной из сторон “треугольника”.

2)       Использовать трансформатор, например понижающий 3Ф 400В / 3Ф 230 В. С трансформатором тоже два варианта, после него так же может быть система IT, либо трансформатор может обеспечить искусственную нейтраль на вторичной обмотке.

Обычно используют трансформатор 380 / 220 В, первичная обмотка которого подключена к любым двум фазам. Если нужно заземление, то один из выводов вторичной обмотки “глухо” заземляют, и получают систему TN-S (или, скорее TN-C-S). При правильном выборе защитного автомата и УЗО система обеспечит отличную защиту от КЗ и прямого прикосновения.

Однако, более безопасной будет система, в которой ни один из выводов трансформатора не подключается на корпус. Трансформатор может быть любым, главное, чтобы на его выходе было напряжение 220 В – не важно, линейное или фазное.

С подключением электродвигателей, клапанов и тому подобного, проблем обычно не возникает, а вот с автоматикой могут быть проблемы. Они связаны с тем, что не все приборы корректно работают при включении их питания в линейное напряжение 230 В (между фазами). Если столкнулись с этой проблемой, тут можно выйти из положения, либо заменой прибора, либо используя маломощный трансформатор с искусственным нолём после вторичной обмотки.

Будет интересно➡  Цоколи ламп — типы, размеры, маркировка

Теоретически да, прибору всё равно, откуда берётся напряжение 220В. А на практике, например, вместо измерения сигнала 4-20 мА какую-то ересь начинают показывать, при том, что датчики заведомо рабочие. Включаешь в обыкновенное фазное напряжение – всё работает. Видимо, что-то с архитектурой конкретных приборов не то. Не часто бывает, но мне пару раз попадалось.

Обозначения в системах заземления

В обозначениях систем используются латинские буквы:

  • T (земля);
  • N (нейтраль или функциональный ноль);
  • I (изолированный);
  • C (соединение защитного и функционального «ноля»);
  • S (раздельное применение во всей сети защитного и функционального «ноля»).

В обозначениях систем первая буква определяет тип заземления источника питания, вторая буква указывает тип заземления открытых компонентов электроприемника.

Правильно спроектированное и реализованное заземление является одним из базовых условий обеспечения электробезопасности объектов, на которых эксплуатируется бытовое или промышленное электрическое оборудование. При выполнении заземления необходимо руководствоваться требованиями ПУЭ (Правила устройства электроустановок).

Пример схемы IT

Как пример практической схемы смотрите фрагмент схемы подключения шкафа выпрямителей постоянного тока. Обратите внимание, что питание осуществляется из сети 3 фазы 230 В, каждый из трех выпрямителей включён между фазами, в линейное напряжение.

Пример построения схемы с системой заземления IT

Фактически, провод защитного заземления есть, он приходит со стороны питающего генератора, но он служит только для заземления корпусов блоков питания.

В данном случае выходное напряжение – постоянное 12 В, но может быть любым! А “минус” всех блоков питания заземлён. Выходы каждого БП через защитные автоматы (не показаны) поступают на нагрузки.

Надеюсь, стало понятней как практически устроено подключение потребителей к системе IT. Спасибо за внимание.

Применение изолированной нейтрали в сети до 1000 В

Изолированный
Благодаря использования изолированной нейтрали в трансформаторе, нивелируется любая возможная вероятность перепада напряжения между жилами «нуля» и «фазами».

Потому даже случайный контакт с проводом под напряжением электрического тока – безопасно.

Чтобы объяснить данный процесс технологическим языком, вы можете ознакомиться с точной формулой ниже, которая демонстрирует равность электрического тока при контакте с человеком.

Iч = 3Uф/(3rч+ z)

Как видно, электрический ток сразу же возвращается к изолированному источнику питания, а не стремится в землю через проводника, в данном случае – человека.

Изолированный нейтраль

Кроме того, поскольку сопротивление тока равно около ста кОм на одну фазную жилу, то соответственно сила напряжения тока будет равна не более нескольких единиц милиампер, что абсолютно безопасно.

Помимо вышеописанных защитных преимуществ изолированной нейтрали, стоит упомянуть о минимизации любых рисков утечки тока на металлический корпус трансформатора или генератора.

Хотя в данном устройстве не сработает изолированное защитное реле или автоматический выключатель, обязательно сработает контроль-система изоляторного сопротивления, которая исключит возможность небезопасной ситуации.

Изолированный

Как итог такой налаженной работы изолированной электроустановки, электросеть с тремя фазами продолжит работоспособность даже в случае короткого замыкания одной жилы «фаз».

В таком случае напряжение электрического потока в активных двух фазах равномерно возрастет и при случайном контакте с одной из них, пользователь попадет под линейное напряжение тока.

Как видно, из-за особенной контракции устройства в электросети существует лишь один тип напряжения тока, в отличие от системы изолированного глухого заземления.

Если пользователь хочет подключить систему к электросети с нагрузкой на одну активную фазу, рекомендуется всегда использовать понижающие электроустановки, по типу генератора 380 на 220.

Преимущества и недостатки изолированной нейтрали

изолированная

Ниже мы опишем плюсы и минусы использования центральной изолированной нейтрали в сетях до 1000 В.

Плюсы изолированной нейтрали:

  1. Высокий уровень безопасности для пользователя.
  2. Продолжительность надежной работы без неисправных ситуаций.
  3. Экономия потребления электроэнергии.
  4. Сохранение работоспособности даже при коротком замыкании одной из трех фаз.

Минусы изолированной нейтрали:

  1. При коротком замыкании одной из фаз, повышается напряжение в действующих, что снижает безопасность использования.
  2. Низкий ток при замыкании.
  3. Отсутствие признаков при первом замыкании фазы.

Классификация сетей с глухозаземлённой нейтралью

Современная система электроснабжения имеет стандартную маркировку где помимо рабочего нулевого проводника присутствует и защитный, что и даёт определение степени защищённости.

  • L — фазный проводник;
  • N — рабочий ноль;
  • РЕ — защитный нулевой проводник;
  • РЕN — рабочий и нулевой проводник выполнены одним проводом.

Существуют несколько подсистем в цепях с источником энергии, имеющим глухозаземлённую нейтраль:

  • TN-C. При данной системе нулевой и защитный проводник с подстанции организован одним проводником, возле приёмника его корпус (или другие элементы, подлежащие заземлению) соединяют с данным совмещенным проводником – это называется зануление. Это устаревшая система, применялась в старых домах при СССР, сейчас для бытовых потребителей не используется, так как небезопасная. Такая система имеет существенный недостаток, так как в случае обрыва РЕN проводника на пути от питающего трансформатора до приемника электроэнергии, на зануленных корпусах оборудования появляется опасный потенциал. Используется только для защиты промышленных потребителей (об этом говорится ниже в следующем разделе).
  • TN-S. Имеет больший процент безопасности во время аварийных ситуаций. Это достигается путём разделения защитного и рабочего проводников по всей длине питающей линии, от трансформатора до распределительного электрощита (до конечного потребителя). Однако за счёт того, что приходится применять кабельную продукцию имеющую пять жил, что сильно увеличивает стоимость прокладки и бюджет на организацию электроснабжения к потребителю, применяется данная система не всегда.
  • TN-C-S. Данная система заземления является наиболее распространенной в наше время. При данной системе нулевой и защитный проводник на всей длине линии объединены в один совмещенный проводник PEN. При входе в здание данный проводник разделяется на защитный PE и нулевой N, которые дальше распределяются по потребителям (квартирам). При данной системе в случае отгорания PEN проводника до точки разделения на заземленных корпусах электроприборов появится опасный потенциал. Для предотвращения этого на всей длине линии и при входе в здание делаются повторные заземления PEN проводника и предъявляются повышенные требования к механической защите данного проводника.
  • ТТ. Данная система заземления практикуется в том случае, если линия системы TN-C-S находится в неудовлетворительном техническом состоянии и не обеспечивается достаточной безопасности предусмотренного в ней защитного заземления. Данная система заземления предусматривает монтаж индивидуального контура заземления у потребителя, при этом PEN проводник электрической сети используется только в качестве нулевого провода N.
Будет интересно➡  Полное сопротивление

Советуем изучить –  Сравнительная характеристика масляных, вакуумных и элегазовых высоковольтных выключателей

Изолированная нейтраль. достоинства и недостатки

Особенности глухого заземления

Заземление нейтрали в глухом режиме предусмотрено для четырехпроводных сетей переменного тока. В таких случаях выполняется глухое заземление нулевых выводов силовых трансформаторов. Соединяются все части, подлежащие заземлению и нулевой заземленный вывод. Нулевой провод должен быть цельным, без предохранителей и каких-либо разъединяющих приспособлений.

В качестве глухозаземленной нейтрали воздушных линий с напряжением до 1 киловольта используется нулевой провод, прокладываемый вместе с фазными линиями на тех же опорах.

Все ответвления или концы воздушных линий, длиной свыше 200 метров подлежат повторному заземлению нулевого провода. То же самое касается вводов в здания, где имеются установки, подлежащие заземлению. В качестве естественных заземлителей могут использоваться железобетонные опоры, а также заземляющие устройства, защищающие от грозовых перенапряжений.

Таким образом, изолированная и глухозаземленная нейтраль обеспечивает нормальную работу релейной защиты генераторов и трансформаторов. Кроме того, они надежно защищают людей от поражения электрическим током.

Изолированная нейтраль. достоинства и недостатки

Заземление нейтрали трансформатора

Изолированная нейтраль. достоинства и недостатки

СИП – самонесущий изолированный провод

Изолированная нейтраль. достоинства и недостатки

Антирезонансные трансформаторы напряжения

Изолированная нейтраль. достоинства и недостатки

Расчет емкостного тока сети

Изолированная нейтраль. достоинства и недостатки

Трансформатор тока нулевой последовательности

Меры предосторожности

Теперь разберём, для чего выполняется заземление нейтрали трансформатора, и физику работы такой электрической сети.

В теоретической физике потенциал нулевого проводника по отношению к земле не должен превышать нулевого значения. Повторное заземление у принимающего устройства потребителя помогает добиться этого значения с ещё более высокой степенью вероятности, особенно, если до ТП есть достаточное расстояние.

Поражение током возможно в следующих ситуациях:

  1. Повреждение изоляции токоведущих частей, выход из строя электрооборудования. Образуется шаговое напряжение – на плоскости пола появляется потенциал, небезопасный для идущего человека;
  2. Повреждение изоляции электрооборудования. В этом случае на корпусе может оказаться опасное для здоровья напряжение;
  3. Повреждение защитной изоляции кабелей. Здесь напряжение появляется на металлических полках, с лежащими кабельными линиями;
  4. Нарушение технологии производства работ, приведшее к прикосновению к токоведущим частям, находящимся под фазным напряжением.

К включенному в сеть проводу, лежащему на влажном полу, подходить не рекомендуется. В этой ситуации появляется потенциал, опасный для человека. При попытке сделать шаг ноги оказываются под действием различных величин потенциала. Удар током обеспечен. Для избегания подобного развития событий перед заливкой бетона укладывается металлический каркас, соединённый с контуром заземления минимум в 2-х точках. За счёт этого при возникновении на полу потенциала ноги идущего человека будут зашунтированы, поражения электрическим током удастся избежать.

Для недопущения появления напряжения на нетоковедущих частях электрической системы ПУЭ обязывает заземлить абсолютно все металлические детали, находящиеся в распредустройствах трансформаторных подстанций и потребителя, а также корпуса электроприборов. В промышленных цехах, где присутствует электрическое оборудование (станки, производственные линии), по периметру пускается стальная полоса для присоединения всех без исключения металлсодержащих частей. Таким образом, выравниваются потенциалы земли и металлических частей, расположенных в помещении.

При возникновении пробоя на заземлённый корпус электрический ток пойдёт по пути наименьшего сопротивления, т.е. по заземляющим проводникам до контура заземления, а не через обладающее большим сопротивлением человеческое тело, даже при не сработавшей защите.

Меры предосторожности при работе в сети с глухозаземленной нейтралью

По этой причине ток через контур заземления направится в сторону нейтрали силового трансформатора. Это приводит к короткому замыканию с большой величиной электрического тока. На превышение заданного параметра должен будет среагировать защитный коммутационный аппарат: плавкая вставка или автоматический выключатель. За счёт этого повреждённый участок цепи будет выведен из работы. Таким образом, организуется быстрая локализация аварийного режима.

Подведем итоги

Мы разобрались для чего нужна изолированная нейтраль до 1 кВ, теперь перечислим достоинства и недостатки системы электроснабжения с изолированной нейтралью для чайников в электрике.

Преимущества использования:

  1. Большая безопасность.
  2. Большая надежность, что позволяет использовать, например, для освещения в больницах.
  3. Экономический фактор – в трёхфазной сети с изолированной нейтралью можно передать электроэнергию по минимально возможному количеству проводов – по трём.
  4. Система продолжит работу при однофазных замыканиях на землю.

Недостатки:

  1. При замыкании на землю повышается опасность использования, так как продолжается подача электроэнергии.
  2. Малые токи КЗ.
  3. Нет искр при первичном КЗ.
Предыдущая
РазноеЭлектрическая энергия: что это такое, формулы, единица измерения
Следующая
РазноеОсциллограмма что это такое?
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять