Что такое осциллограмма: измерение осциллографом, расшифровка

Осциллограмма что это такое?

История

Трудность создания осциллографа заключалась в том, что регистрирующие части первых приборов имели большую инерцию. Смог с этим справиться Ульям Дадделл. В 1897 году он использовал зеркальный измерительный элемент. Так был создан светолучевой прибор. В качестве приёмника использовалась светочувствительная пластина. На неё записывался поданный сигнал. Только изобретение Карлом Брауном кинескопа позволило Йонатану Зеннеку выполнить в нём горизонтальную развертку. Так, в 1899 году появилось устройство, похожее на современные осциллографы. Уже в 30-е годы следующего столетия Владимир Зворыкин совершил прорыв в этой области, создав свой кинескоп, который был надёжнее.

Интересные факты

Катодные лучи, открытые Юлиусом Плюккером в 1859 году, хоть и распространяются линейно, но подвержены действию электромагнитных полей. Это установил Уильям Крукс. Он выявил, что катодные лучи, попадая на некоторые вещества, заставляют их светиться.

Значение слова осциллограмма

В переводе с греческого языка осциллограмма – это качающееся изображение. Действительно, на экране осциллоскопа можно наблюдать колеблющуюся светящуюся линию. Этот движущийся график способен показать, как изменяется электрический сигнал с течением периода времени.

Определение угла сдвига фаз на осциллограмме

Как пользоваться осциллографом

Чтобы измерить угол сдвига фаз на графиках двух сигналов, следует подавать на первый канал максимальное напряжение. Это улучшит синхронизацию картинки на экране. Величина сдвига измеряется не в секундах, а в градусах. Визуально можно проследить расположение двух графиков электрического сигнала относительно друг друга в конкретный период времени. Синусоидальная форма сигнала позволяет фиксировать сдвиг фаз. Для повышения точности результата можно растягивать изображение в длину или установить для сигналов разную амплитуду, чтобы отличать один от другого.

Классификация

По логике работы и назначению осциллографы можно разделить на три группы:

  • реального времени (аналоговый)
  • запоминающий осциллограф (storage oscilloscope)
    • аналоговый (например, с запоминающим устройством на ЭЛТ)
    • цифровой (DSO — digital storage oscilloscope)
  • стробирующий осциллограф (sampling oscilloscope)

Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф).

По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16 и более (n-лучевой осциллограф имеет n сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).

Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

Имеются осциллографы (в основном, портативные), совмещенные с другими измерительными приборами (напр. мультиметром). Такие приборы называются скопметрами. В последние годы на рынке появились планшетные осциллографы, т.е. приборы с полностью сенсорным управлением на цветном дисплее.

Осциллограф также может существовать не только в качестве отдельного прибора, но и в виде приставки к компьютеру: в виде карты расширения, или подключаемой через какой-либо внешний порт (чаще всего USB).

Что такое осциллограф и как он работает?

Осциллограф — это, по сути, устройство для отображения графика — он рисует график электрического сигнала. В большинстве приложений график показывает, как сигналы изменяются во времени: вертикальная ось (Y) представляет напряжение, а горизонтальная ось (X) представляет время. Интенсивность или яркость дисплея иногда называют осью Z, как показано на рисунке 1. В осциллографах DPO ось Z может быть представлена цветовой градацией дисплея, как показано на рисунке 2.

Осциллограмма что это такое?

Рис. 1. Компоненты X, Y и Z отображаемого сигнала.

Осциллограмма что это такое?

Рис. 2. Два смещенных шаблона синхронизации с градацией интенсивности по оси Z.

Этот простой график может многое рассказать о сигнале, например:

  • Значения времени и напряжения сигнала
  • Частота осциллирующего сигнала
  • «Движущиеся части» цепи, представленные сигналом
  • Частота, с которой конкретная часть сигнала возникает относительно других частей
  • Искажает ли неисправный компонент сигнал
  • Какая часть сигнала является постоянным током (DC) или переменным током (AC)
  • Какая часть сигнала представляет собой шум и меняется ли шум со временем

Общие сведения о сигналах и измерениях сигналов

Общий термин для паттерна, который повторяется во времени, — это волна. Звуковые волны, мозговые волны, океанские волны и волны напряжения — все это повторяющиеся паттерны. Осциллограф измеряет волны напряжения. Физические явления, такие как вибрации или температура, или электрические явления, такие как ток или мощность, могут быть преобразованы датчиком в напряжение. Один цикл волны — это часть волны, которая повторяется. Форма волны — это графическое представление волны. Форма волны напряжения показывает время по горизонтальной оси и напряжение по вертикальной оси.

Формы сигналов многое говорят о сигнале. Каждый раз, когда вы видите изменение высоты формы волны, вы знаете, что напряжение изменилось. Плоская горизонтальная линия говорит о том, что за этот промежуток времени изменений не произошло. Прямые диагональные линии означают линейное изменение — рост или падение напряжения с постоянной скоростью. Острые углы на осциллограмме указывают на внезапное изменение. На рис. 3 показаны распространенные формы сигналов, а на рис. 4 — источники распространенных сигналов.

Осциллограмма что это такое?

Рис. 3. Распространенные формы сигналов.

Осциллограмма что это такое?

Рис. 4. Источники распространенных сигналов.

Типы волн

Большинство волн могут быть классифицированы по следующим типам:

  • Синусоиды
  • Квадратичные и прямоугольные волны
  • Пилообразные и треугольные волны
  • Пошаговые и пульсирующие волны
  • Периодические и непериодические
  • Синхронные и асинхронные
  • Комплексные волны

Аналоговый осциллограф

Его еще также называют электронно-лучевой осциллограф, так как он состоит из электронно-лучевой трубки. По сути электронно-лучевая трубка представляет из себя маленький кинескоп, на котором мы можем наблюдать какое-либо изменение электрического сигнала.

Будет интересно➡  Как выбрать и использовать коронки для подрозетников

Любой осциллограф имеет экран. Он может быть встроенный, либо это может быть монитор вашего настольного компьютера или дисплей ноутбука. В нашем случае на фото мы видим, что наш осциллограф имеет круглый экранчик. Сигнал, который вырисовывается на таком экране называется осциллограммой.

Для измерения электрических сигналов нам потребуются специальный щуп для осциллографа. Такой щуп представляет из себя кабель из двух проводов, один из которых является сигнальным, а другой нулевым. Нулевой провод также часто называют «землей».

Более современные щупы уже выглядят вот так.

А вот и сам разъем щупа

Этот конец щупа соединяется с осциллографом и фиксируется небольшим поворотом по часовой стрелке.

Что делать, если вы не помните, какой провод из щупа является сигнальным, а какой нулевым? Это определяется очень просто. Так как человек находится всегда в электромагнитном поле, он является своего рода принимающей антенной и может наводить помехи. Касаясь сигнального щупа осциллографа, на экране мы увидим, что сигнал очень сильно исказился.

При касании нулевого провода, сигнал на осциллографе остался бы таким, какой был. То есть чистый ноль.

Для того, чтобы измерить постоянное напряжение, мы должны переключить осциллограф в режим DC, что означает «постоянный ток». В разных моделях это делается по разному, но этот переключатель обязательно должен быть в каждом осциллографе.

Давайте рассмотрим на реальном примере, как можно измерить постоянное напряжение. Для этого нам потребуется источник постоянного тока. В данном случае я возьму лабораторный блок питания. Выставляю на нем значение напряжения в 1 Вольт.

Теперь необходимо выбрать масштаб измерений. Если мы хотим, чтобы одна сторона квадратика была равна 1 Вольту, то ставим коэффициент масштабирования 1:1. В данном случае я выставляю переключатель вертикальный развертки на единичку.

Далее сигнальный провод осциллографа цепляем на «плюс» питания, а нулевой  — на «минус» питания. Далее наблюдаем вот такую картину.

Как вы могли заметить, осциллограммой постоянного тока является прямая линия, параллельная горизонтальной оси (оси Х). По вертикальной оси (оси Y) мы видим, что сигнал поднялся ровно на одну клеточку.  Мы выставили коэффициент масштабирования по Y, что 1 клеточка — это 1 Вольт. Следовательно в нашем случае сигнал поднялся ровно на 1 клеточку, что говорит нам о том, что это и есть осциллограмма постоянного тока в 1 Вольт.

Я также могу изменить коэффициент. Например, ставлю на 2. Это означает, что 1 квадратик будет уже равен 2 Вольтам.

Смотрим, что произойдет с сигналом с напряжением в 1 Вольт

Здесь мы видим, что его значение просело в 2 раза, так как мы взяли коэффициент 1:2, что означает 1 квадратик равен 2 Вольтам. Благодаря масштабированию вертикальный развертки, мы можем измерять сигналы напряжением хоть в 1000 вольт!

Что случится, если мы соединим сигнальный провод осциллографа с «минусом» питания, а нулевой с «плюсом» питания? В этом случае осциллограмма «пробьет пол» и просто покажет минусовые значения. Ничего страшного в этом нет. Здесь мы видим значение  «-2» Вольта.

Для измерения переменного напряжения нам потребуется переключить осциллограф в режим измерения AC — «переменный ток». Если вы хотите просто наблюдать форму сигнала, то вам необязательно знать, какой провод осциллографа куда тыкать. Давайте измеряем переменное напряжение с понижающего трансформатора, который включен в сеть 220 Вольт.

Снимаем напряжение со вторичной обмотки трансформатора и видим вот такую осциллограмму.

По идее здесь должен быть чистый синус. То ли трансформатор вносит искажения в сигнал, то ли на электростанции что-то не так.  Непонятно. Ну да ладно, главное то, что мы сняли осциллограмму переменного напряжения со вторичной обмотки трансформатора.

В этом случае мы можем без проблем определить период сигнала и его частоту. В этом нам поможет переключатель горизонтальной развертки по оси времени.

Мы видим, что его значение стоит на 5. Это означает, что один квадратик по оси «Х» , то есть по оси времени, будет равен 5 миллисекунд или 0,005 секунд.

Период — это время, через которое сигнал повторяется. Обозначается буквой Т. В нашем случае период равен 4 квадратикам.

Так как один квадратик в нашем случае равен 0,005 секунд, то получается, что T=0,005 x 4 = 0,02 секунды. Отсюда можно узнать частоту сигнала.

где

V — это частота, Гц

T — период сигнала, с

Для данного случая

V=1/T=1/0,02=50 Гц.  Трансформатор меняет только амплитуду сигнала, но не изменяет его частоту. Поэтому, частота в нашей сети 50 Герц, что и подтвердил осциллограф.

Цифровой осциллограф

Цифровой осциллограф — это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие от аналогового в том, что внутри него идет цифровая обработка сигналов. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять исследуемый сигнал. И это только часть функций!

Включаем осциллограф и цепляем щуп на любой из каналов. Я соединил щуп с первым каналом (CH1)

На щупе есть делитель. Ставим его ползунок на 10Х.  В осциллографе по умолчанию также должен стоять делитель на 10Х. Если это не так, ищем в его настройках и ставим в характеристиках канала «10Х».

Каждый нормальный цифровой осциллограф имеет встроенный генератор прямоугольных импульсов с частотой 1000 Герц (1кГц) и амплитудой напряжения в 5 Вольт. Чаще всего этот генератор находится в нижнем правом углу. В нашем случае он называется Probe Comp. Цепляемся за него щупом.

Все должно выглядеть приблизительно вот так:
На дисплее в это время происходит какой-то

[quads id=1]

В этом осциллографе есть волшебная кнопка, от которой я без ума. Это кнопка автоматического позиционирования сигнала Autoscale. Нажал на эту кнопку

Согласился с условиями автоматического позиционирования сигнала

Но что такое? У нас должен быть ровный прямоугольный периодический сигнал! Вся проблема в том, что щуп осциллографа вносит искажения в сам сигнал, поэтому, его  желательно корректировать каждый раз перед работой.

Будет интересно➡  Что представляет собой свободная энергия?

В современных щупах есть маленький винтик, заточенный под тонкую отвертку. С помощью этого винтика мы будем корректировать щуп.

Крутим и смотрим, что у нас получается на дисплее.
Ого, слишком сильно крутанул винт.

Крутим чуточку в обратную сторону и выравниваем горизонтально вершины сигнала.

Вот! Совсем другое дело! На дисплее у нас ровные прямоугольные сигналы, следовательно на этом этапе цифровой осциллограф полностью готов к работе.

Плюсы и минусы цифрового осциллографа

Начнем с плюсов

  • Запись, остановка, автоматические измерения и другие фишки — это еще не весь список, что умеет делать цифровой осциллограф
  • Габариты цифрового осциллографа намного меньше, чем аналогового
  • Потребление энергии меньше, чем у аналогового осциллографа
  • Жидкокристаллический дисплей, в отличие от кинескопного дисплея аналогового осциллографа

Минусы

  • Дороговизна
  • Дискретная прорисовка сигнала. Хотя дорогие модели ничуть не уступают аналоговым по прорисовке сигнала.

Где купить цифровой осциллограф

Естественно, на Алиэкспрессе, так как в наших интернет-магазинах их цена бывает завышена в два, а то и в три раза. Также очень хорошие отзывы об осциллографе Hantek, характеристики которого даже лучше, чем у моего OWON:

Посмотреть его можете на Алиэкпрессе по этой ссылке.

USB осциллограф

USB-осциллограф представляет из себя прибор, который не имеет собственного экрана.

У нас на обзоре USB осциллограф INTRUSTAR.

В придачу с ним шли 2 щупа, шнур USB, расходники, диск с ПО, а также отвертка для регулировки щупов

С одной стороны осциллографа мы видим два разъема для подключения щупов. Первый разъем CH1, что означает первый канал, а второй разъем CH2, то есть второй канал. Следовательно, осциллограф двухканальный.  Справа видим два штыря. Эти штыри — генератор тестового сигнала для калибровки щупов осциллографа. Один из них земля, а другой — сигнальный. Калибруем точно также, как и простой цифровой осциллограф. Как это делать, я писал выше в статье.

В рабочем состоянии USB осциллограф выглядит вот так.

После установки программного обеспечения на компьютер или ноутбук, открываем программу и запускаем осциллограф. Здесь я уже сразу подцепил тестовый сигнал, чтобы подготовить осциллограф к работе.

Также можно вывести значение сигналов, которые осциллограф сразу бы показывал на экране монитора.

Плюсы и минусы USB осциллографа

Плюсы:

  1. Умеренная цена и функционал. Стоит в разы дешевле, чем крутые цифровые осциллографы
  2. Настройка и установка ПО занимает около 10-15 минут
  3. Удобный интерфейс
  4. Малогабаритный размер
  5. Может производить операции как с постоянным, так и с переменным током
  6. Два канала, то есть можно измерять сразу два сигнала и выводить их на дисплей

Минусы:

  1. Малая частота дискретизации
  2. Обязательно нужен ПК
  3. Малая полоса пропускания
  4. Глубина памяти тоже никакая

Применение осциллографа

Осциллограф — понятие и конструкция прибора

Прибор используют для наблюдения на дисплее графика изменения параметров исследуемого сигнала или сигналов. Что измеряет осциллограф? С его помощью можно одновременно контролировать напряжение, силу тока, частоту и сдвиг фаз. Измерение сигналов, подаваемых на вход осциллоскопа, проводят как в стационарных, так и в полевых условиях.

Подключение мотортестера для снятия осциллограмм высокого напряжения

Последовательность подключения измерительных датчиков к системам различных типов значительно отличается, поэтому рассмотрим три разновидности систем, которые можно встретить на современных бензиновых двигателях.

Это системы:

  • классическая с механическим распределителем;
  • система типа DIS;
  • система типа СОР.

Подключение к классической системе с механическим распределителем высокого напряжения показано на рисунке: Мотортестер, ваш помощник. Часть 6

Синхронизирующий датчик первого цилиндра устанавливается на высоковольтный провод первого цилиндра, измерительный датчик – на центральный провод между катушкой зажигания и распределителем. Такое подключение обеспечивает отображение импульсов высокого напряжения одновременно всех четырех цилиндров, а синхронизация осуществляется по импульсу первого цилиндра.

Возникает вопрос: можно ли подключить измерительный датчик непосредственно к проводу интересующего нас цилиндра и снять осциллограмму с него?

Да, можно, но нужно понимать, что из-за дополнительного искрового зазора между бегунком и крышкой распределителя после угасания искры измерительный датчик оказывается фактически отключенным от катушки зажигания. Указанное явление приводит к исчезновению на осциллограмме затухающих колебаний, характеризующих исправность катушки.

Особняком стоят системы зажигания, применявшиеся на некоторых автомобилях японского и американского производства. В литературе встречается их название Integrated Ignition Assembly (IIA), что можно перевести как «интегрированный узел зажигания». Такие системы сходны с классическими, но содержат встроенную в механический распределитель катушку и, соответственно, не имеют центрального высоковольтного провода. Мотортестер, ваш помощник. Часть 6

Подключение мотортестера к системе типа IIA выполняется аналогично классической, с установкой датчика первого цилиндра на соответствующий провод. Отличие в том, что для снятия осциллограммы необходимо поднести измерительный датчик к хорошо различимому на крышке высоковольтному выводу катушки зажигания. Как показывает практика, этого вполне достаточно для получения стабильной осциллограммы напряжения на катушке с характерными затухающими колебаниями после угасания искры.

Рассмотрим подключение датчиков мотортестера к системе типа DIS. Она отличается применением катушек зажигания с двумя высоковольтными выводами. В большинстве случаев катушки объединены один блок, а высокое напряжение подводится к свечам непосредственно от катушек по проводам.

В такой системе зажигания искрообразование происходит одновременно в двух цилиндрах, при этом полярность импульсов на свечах пары цилиндров оказывается противоположной. Учитывая все вышесказанное, нетрудно прийти к заключению: измерительные датчики мотортестера при работе с системой DIS устанавливаются на каждый высоковольтный провод, при этом необходимо соблюдать полярность. Как и в случае классической системы, на провод первого цилиндра устанавливается синхронизирующий датчик. Мотортестер, ваш помощник. Часть 6

Измерительные датчики разной полярности, как правило, помечены разным цветом. Сама процедура определения полярности зависит от конструкции мотортестера и описана в руководстве к конкретному прибору.

Будет интересно➡  Схемы подключения трехфазного счетчика. Установка трёхфазного счетчика

Для проведения диагностики системы DIS по первичному напряжению необходимо снять осциллограммы напряжения на первичных обмотках катушек, подключив к их выводам щупы мотортестера в режиме измерения напряжения до 500В. Синхронизацию при этом можно использовать как от датчика первого цилиндра, так и любую другую, например, по ДПКВ. Следует заметить, что в корпус катушки может быть встроен силовой каскад управления первичной обмоткой. В таком случае диагностика по первичному напряжению становится невозможной.

Снятие осциллограммы в случае систем типа СОР имеет свои особенности. Данная система характеризуется тем, что каждая свеча обслуживается собственной (индивидуальной) катушкой зажигания. В зависимости от конструкции индивидуальные катушки можно разделить на два типа – компактные и стержневые. Мотортестер, ваш помощник. Часть 6

Помимо этого встречаются конструкции, где индивидуальные катушки объединены в модуль по две, три или четыре: Мотортестер, ваш помощник. Часть 6

Так как каждая свеча двигателя обслуживается собственными катушкой и коммутатором, можно говорить о том, что каждый цилиндр имеет собственную систему зажигания. Поэтому диагностика СОР-систем зажигания сводится к последовательной проверке каждой ее части.

Для проведения диагностики по первичному напряжению нужно снять его осциллограмму, подключив один из каналов в режиме изменения напряжения до 500В к управляющему выводу первичной обмотки.

Если индивидуальная катушка содержит встроенный коммутатор, то управляющий вывод находится внутри корпуса катушки и оказывается недоступным для подсоединения к нему щупов мотортестера. Это делает невозможным проведение диагностики по первичному напряжению и ее проводят по вторичному напряжению с применением накладных СОР-датчиков емкостного или индуктивного типов различных конструкций. Мотортестер, ваш помощник. Часть 6

Применение емкостного датчика предпочтительно, так как полученная с его помощью осциллограмма более точно повторяет форму напряжения во вторичной цепи диагностируемой системы зажигания. Временные параметры осциллограммы (продолжительность накопления энергии, момент высоковольтного пробоя, время горения искры), полученной при помощи емкостного датчика, точно соответствуют действительности.

Но амплитудные значения напряжений пробоя и горения оценивать нельзя: они сильно зависят от расстояния между чувствительной поверхностью датчика и вторичной обмоткой катушки – чем меньше это расстояние, тем больше амплитуда сигнала. К сожалению, применение такого датчика становится невозможным в случае, если создаваемое вторичной обмоткой электрическое поле экранировано конструктивно.

В такой ситуации применяется датчик индуктивного типа. Чаще всего он требуется при работе с индивидуальными катушками стержневого типа либо модулями из нескольких индивидуальных катушек. При установке датчика следует выбрать такое его положение относительно сердечника исследуемой катушки зажигания, при котором будет наблюдаться максимальная амплитуда осциллограммы.

Как и в случае применения емкостного датчика, возможен корректный анализ лишь временных параметров осциллограммы. Амплитудные же значения оценивать опять-таки нельзя: они сильно зависят от взаимного положения датчика и катушки, а также от особенностей их конструкции. Мотортестер, ваш помощник. Часть 6

Следует отметить, что получение осциллограммы с применением накладных СОР-датчиков обоих типов в отдельных случаях представляет собой занятие достаточно творческое. Большое разнообразие конструкций индивидуальных катушек разных производителей заставляет искать методы снятия осциллограмм с использованием сначала датчиков сначала одного типа, затем другого, поиском удачного взаимного положения катушки и датчика.

Так или иначе, получить более или менее пригодную для анализа осциллограмму удается в большинстве случаев. Отдельные ее участки, вроде накопления энергии, могут оказаться сильно искаженными вследствие конструктивных особенностей катушки. В этом случае имеет смысл сравнительный анализ осциллограмм катушек разных цилиндров. Как правило, исправные катушки имеют осциллограммы одинаковой или очень сходной формы. Если же форма напряжения одной из катушек заметно отличается от других, можно говорить о наличии дефекта и проводить более детальную проверку.

Краткий итог

Для  работы с системами зажигания применяются два типа датчиков: емкостные и индуктивные. Классическая система с механическим распределителем: синхронизирующий датчик устанавливается на провод первого цилиндра, измерительный – на центральный провод. Система типа DIS: синхронизирующий датчик устанавливается на провод первого цилиндра, измерительные датчики – на провода всех цилиндров с соблюдением полярности. Система типа СОР: используется накладной емкостный или индуктивный датчик, анализ осциллограмм возможен методом сравнения, амплитудные значения оценивать нельзя.

Режимы отображения осциллограмм системы зажигания

Программная часть мотортестеров, как правило, предоставляет широкие возможности для анализа осциллограмм системы зажигания. Для удобства пользователя существуют четыре режима отображения осциллограмм первичного и вторичного напряжений: «Парад», «Расширенный парад», «Растр» и «Наложение».

Переключение режимов отображения осуществляется тем или иным способом и зависит от конкретного прибора. Разные режимы отображения облегчают анализ различных характеристики осциллограмм; рассмотрим их по порядку.

1. Парад

Сигналы от каждого из цилиндров отображаются на одной горизонтальной линии в количестве и последовательности, соответствующей порядку работы цилиндров данного двигателя. Например, 1-3-4-2. Этот режим удобен для сравнения значений напряжения пробоя и горения в разных цилиндрах, а также для покадрового визуального контроля осциллограммы процесса искрообразования. Мотортестер, ваш помощник. Часть 6

2. Расширенный парад

Режим аналогичен предыдущему, с той лишь разницей, что программой искусственно расширен участок горения искры. При этом не отображается участок, соответствующий накоплению энергии в катушке. Данный режим удобен для более тщательного визуального контроля формы осциллограммы процессов искрообразования одновременно во всех цилиндрах. Мотортестер, ваш помощник. Часть 6

3. Растр

Этот режим позволяет очень эффективно сравнивать длительность накопления, горения искры и затухающих колебаний в катушке, а также производить сравнительный анализ формы осциллограмм этих процессов в разных цилиндрах. Осциллограммы на экране отображаются друг над другом на горизонтальных линиях. Их количество и последовательность опять же соответствуют количеству и порядку работы цилиндров двигателя. Мотортестер, ваш помощник. Часть 6

4. Наложение

Осциллограммы процессов искрообразования всех цилиндров отображаются на одной горизонтальной линии, наложенными друг на друга. Этот режим позволяет визуально оценить степень корреляции формы осциллограмм в различных цилиндрах и сделать соответствующие выводы. Мотортестер, ваш помощник. Часть 6

Предыдущая
РазноеЧто такое однолинейная схема электроснабжения и какие требования для её проектирования?
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять