Что такое аналоговые сигналы: чем отличаются от цифровых и общая информация

Аналоговый сигнал — определение и особенности. Чем отличаются аналоговый сигнал от цифрового — примеры использования

Что такое аналоговый сигнал

Аналоговый сигнал – это любой непрерывный сигнал, для которого изменяющаяся во времени характеристика (переменная) является представлением некоторой другой изменяющейся во времени величины. Иначе говоря, это информация, которая непрерывно изменяется во времени.

В аналоговом звуковом сигнале мгновенное напряжение непрерывно поменяется в зависимости от давления звуковых волн. Он имеет отличия от цифрового сигнала, где перманентная величина представляет собой последовательность дискретных значений. Такая величина может принимать только одно из конечного числа значений.

Термин аналоговый сигнал обычно относится к электрическим сигналам. Тем не менее, механические, гидравлические, пневматические, человеческая речь, а также иные системы могут передавать или рассматриваться как аналоговые сигналы.

Примером аналогового сигнала может служить восприятие человеческим мозгом проезжающего автомобиля. В случае, если бы его положение менялось каждые 5 секунд, аварии было бы не избежать.

Аналоговый тип сигнала непосредственно подвергается воздействию электронных шумов и искажений. Они привносятся каналами связи и операциями обработки сигналов. Они запросто могут ухудшать отношение сигнал/шум (ОСШ). Напротив, цифровые сигналы обладают конечным разрешением. Преобразование аналогового сигнала в цифровую форму вносит в сигнал низкоуровневый шум квантования. В цифровой форме сигнал может быть обработан или передан без внесения значительного дополнительного шума или искажений. В аналоговых системах трудно обнаружить, когда случается такое ухудшение. Тем не менее в цифровых системах отклонения и ухудшения могут не только обнаружиться, но и исправляться.

Самым серьёзным минусом аналоговых сигналов по сравнению с цифровой передачей является то, что аналоговый тип сигнала всегда содержит шум. По мере того, как сигнал передается, обрабатывается или копируется, неизбежно наличие шума, который проникает в путь прохождения сигнала. Будет происходить накопление шума как потери при генерации сигнала, постепенно и необратимо ухудшая отношение сигнал/шум. Это будет до тех пор, пока в крайних случаях сигнал не будет перегружен. Шум может проявляться как «шипение» и интермодуляционные искажения в аудиосигналах или «снег» в видеосигналах. Потери при генерации сигнала необратимы, поскольку нет надежного способа отличить шум от сигнала, отчасти потому, что усиление сигнала для восстановления ослабленных частей сигнала также усиливает шум.

Шумы аналоговых сигналов можно минимизировать благодаря экранированию, надежному подключению и использованию кабелей определенных типов, как коаксиальная или витая пара.

Любой тип информации может передаваться аналоговым сигналом. Нередко такой сигнал является измеренным откликом на изменения физических явлений, таких как звук, свет, температура, давление или положение. Физическая переменная преобразуется в аналоговый сигнал через преобразователь. К примеру, звук, который падает на диафрагму микрофона, вызывает соответствующие колебания тока. Ток генерируется катушкой в электромагнитном микрофоне. Это также может быть напряжение, которое создаётся конденсаторным микрофоном. Напряжение или ток называются «аналогом» звука.

Чем отличаются аналоговый сигнал от цифрового – примеры использования

Цифровое телевидение охватило уже практически территорию всей страны. Качественный цифровой сигнал новые телевизоры принимают самостоятельно, старые – с помощью специальной приставки. В чем разница между старым аналоговым и новым цифровым сигналом? Многим это непонятно и требует разъяснения.

Виды сигналов

Сигнал это изменение физической величины во времени и пространстве. По сути это коды для обмена данными в информационной и управленческой средах. Графически любой сигнал можно представить в виде функции.

По линии на графике можно определить тип и характеристики сигнала. Аналоговый будет выглядеть как непрерывная кривая, цифровой как ломаная прямоугольная линия, скачущая от ноля до единицы.

Все, что мы видим глазами и слышим ушами поступает в виде аналогового сигнала.

Аналоговый сигнал

Зрение, слух, вкус, запах и тактильные ощущения поступают нам в виде аналогового сигнала. Мозг командует органами и получает от них информацию в аналоговом виде. В природе вся информация передаётся только так.

В электронике аналоговый сигнал основан на передаче электричества. Определённым величинам напряжения соответствуют частота и амплитуда звука, цвет и яркость света изображения и так далее. То есть цвет, звук или информация являются аналогом электрического напряжения.

Например: Зададим передачу цветов определённым напряжением синий 2 В, красный 3 В, зелёный 4 В. Изменяя напряжение получим на экране картинку соответствующего цвета.

При этом неважно идёт сигнал по проводам или радио. Передатчик непрерывно отправляет, а приёмник обрабатывает аналоговый вид информации. Принимая непрерывный электрический сигнал по проводам или радиосигнал через эфир приёмник преобразует напряжение в соответствующий звук или цвет. Изображение появляется на экране или звук транслируется через динамик.

Дискретный сигнал

Вся суть кроется в названии. Дискретный от латинского discretus, что означает прерывистый (разделённый). Можно сказать, что дискретный повторяет амплитуду аналогового, но плавная кривая превращается в ступенчатую. Изменяясь либо во времени, оставаясь непрерывной по величине, или по уровню, не прерываясь по времени.

Так, в определенный период времени (например миллисекунду или секунду) дискретный сигнал будет какой-то установленной величины. По окончании этого времени он резко изменится в большую или меньшую сторону и останется таким ещё миллисекунду или секунду. И так беспрерывно. Поэтому дискретный это преобразованный аналоговый. То есть полпути до цифрового.

Будет интересно➡  Что такое диэлектрики и их примеры

Цифровой сигнал

После дискретного следующим шагом преобразования аналогового стал цифровой сигнал. Главная особенность – либо он есть, или его нет.

Вся информация преобразуется в сигналы ограниченные по времени и по величине. Сигналы цифровой технологии передачи данных кодируются нолем и единицей в разных вариантах.

А основой является бит, принимающий одно из этих значений. Бит от английского binarydigit или двоичный разряд.

Но один бит имеет ограниченную возможность для передачи информации, поэтому их объединили в блоки. Чем больше битов в одном блоке, тем больше информации он несёт. В цифровых технологиях используют биты объединенные в блоки кратные 8. Восьмибитовый блок назвали байтом.

Один байт небольшая величина, но уже может хранить зашифрованную информацию о всех буквах алфавита. Однако при добавлении всего одного бита число комбинаций ноля и единицы удваивается. И если 8 битов делает возможным 256 вариантов кодировки, то 16 уже 65536.

А килобайт или 1024 байт и вовсе немаленькая величина.

ВНИМАНИЕ! Ошибки в том, что 1 КБ равен 1024 байт нет. Так принято в двоичной компьютерной среде. Но в мире широко используется десятичная система исчисления, где кило это 1000. Поэтому существуют еще и десятичный кБ равный 1000 байт.

В большом количестве объединённых байтов хранится много информации, чем больше комбинаций 1 и 0 тем больше закодировано. Поэтому в 5 – 10 МБ (5000 – 10000 кБ) имеем данные музыкального трека хорошего качества. Идём дальше, и в 1000 МБ закодирован уже фильм.

Сравнительная таблица

Аналоговый сигналЦифровой сигнал
Тип сигналов, которые являются непрерывными по своей природе и продолжают меняться со временем, известен как аналоговый сигнал.Тип сигналов с дискретными значениями и двоичными данными известен как цифровой сигнал.
Представление
Его сигналы представляют непрерывно.Его сигналы характеризуют прерывисто.
Анализ
Аналоговые сигналы сложно анализировать.Такие сигналы легко анализировать.
Точность
Это более точный тип сигналов.Эти сигналы имеют меньшую точность.
Время, необходимое для хранения
На сохранение аналоговых сигналов нужно время.Эти сигналы легко сохранить.
Возможности
Аналоговые сигналы имеют безграничные возможности.Их возможности ограничены.
Диапазон
У них неограниченное количество значений, поэтому их диапазон не может быть установлен.Такие сигналы варьируются от 0 до 1.
Тип волн
Аналоговые сигналы представлены в виде непрерывных синусоид.Цифровые сигналы представлены в виде прямоугольных волн.
Форма информации
Аналоговые сигналы отображают информацию в виде сигнала.Цифровые сигналы показывают информацию в двоичной форме, то есть в битах.
Это объясняет
Аналоговый сигнал объясняет действия волны в соответствии с ее периодом времени, амплитудой и фазой сигнала.Цифровой сигнал описывает характеристики сигнала в соответствии с битовой скоростью и битовым интервалом.
Гибкость
В аналоговом оборудовании нет гибкости.Его оборудование демонстрирует гибкость во время создания.
В шумных условиях
В случае шума аналоговые сигналы искажаются и становятся горизонтальными.Эти сигналы устойчивы к шумам и не подвержены искажениям.
Импеданс
Аналоговые сигналы имеют низкий импеданс.Цифровые сигналы имеют импеданс высокого порядка, то есть до 100 МОм.
Расходы
Аналоговые устройства имеют невысокую стоимость и портативны.Цифровые устройства имеют высокую стоимость и их нелегко переносить.
Власть
Такой инструмент требует большой мощности.Цифровым устройствам требуется ничтожно мало энергии.
Пропускная способность
Обработка аналоговых сигналов может выполняться в режиме реального времени, и для этого требуется меньшая полоса пропускания.Обработка цифрового сигнала не гарантируется в реальном времени, и для обработки той же информации требуется большая полоса пропускания.
Ошибки
Аналоговые устройства имеют шкалу, закрепленную на нижнем конце. Это вызывает множество ошибок наблюдений.Цифровые устройства не имеют таких ошибок наблюдения, как ошибки аппроксимации, параллакс и т. Д.
Производство шума
Эти типы сигналов вызывают шум.Эти сигналы не вызывают шума.
Примеры
Аналоговые телефоны, термометры, человеческий голос и т. Д. Являются примерами таких сигналов.Цифровые телефоны, цифровые ручки, компьютеры и т. Д. Являются примерами таких сигналов.
Использует
Аналоговые сигналы используются в аналоговых устройствах и лучше всего подходят для передачи видео и звука.Цифровые сигналы используются в цифровых устройствах и лучше всего подходят для вычислений.
Типы
Аналоговый сигнал делится на два типа: простые сигналы и составные сигналы.Другого типа такого сигнала нет.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и цифро-аналоговый (ЦАП) преобразователи. Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Диапазон сигнала вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Будет интересно➡  Устройство и принцип действия генераторов переменного тока

электрический сигнал

Как аналоговый сигнал преобразуется в цифровой и наоборот

Первой в цифровую форму преобразовали математическую, физическую и компьютерную информацию. Описать формулы и расчеты не составило труда. А вот для преображения аналоговой действительности в цифровые массивы уже потребовались специальные устройства. Ими стали аналого-цифровые преобразователи или сокращенно АЦП. Они предназначены для преобразования различных физических величин в цифровые коды. Обратное действие совершают устройства ЦАП.

Любые цифровые передатчики и приёмники оснащены такими преобразователями. Например, сотовому телефону, поступивший звук необходимо обработать и передать в оцифрованном виде. В то же время необходимо принять от другого абонента код, преобразовать и передать напряжение на динамик. Так же и с изображением на смартфонах и в телевизорах. В любом случае первоначальной информацией выступает напряжение.

Существует много видов АЦП, но самыми распространёнными являются следующие:

  • параллельного преобразования;
  • последовательного приближения;
  • дельта-сигма, с балансировкой заряда.

Преобразования в АЦП понятийно связаны с измерением и сравнением. Кодировка, это процесс сравнения полученных от источника данных с эталоном. То есть полученная аналоговая величина сравнивается с эталонной (с заданным напряжением). Эталоном выступает информация о конкретном цвете, звуке и т.п. Она соответствует заложенным в устройство представлениям о преобразуемом сигнале. Потом данные эталонной величины кодируются для передачи. Во время аналого-цифровой обработки физических превращений сигнала не происходит. С аналогового делается цифровой матрица (модель).

Упрощенно работу любого АЦП можно представить так:

  1. Измерение через определенные интервалы времени амплитуды напряжения.
  2. Сравнение с эталоном и формирование данных.
  3. Отгрузка оцифрованных сведений об изменениях амплитуды на передатчик.

Качество передаваемой информации зависит от двух параметров — точности и частоты измерений. Чем точнее измеряется и зашифровывается входящее напряжение, тем качественней передаваемая информация. Поэтому, имеет большое значение, сколько бит может зашифровать преобразователь. Чем плотнее информационный поток, тем точней передача данных. Это выражается в красках экрана, контрастности картинки и чистоте звука. Следующим важным показателем является дискретизация, то есть частота измерений. Чем чаще, тем меньше провалов в измерениях и необходимости сглаживания. В совокупности, чем чаще и точнее преобразователь может измерять и обрабатывать полученное напряжение, тем он лучше.

Как выглядят спектры аналогового и дискретного сигнала

Изображение сигналов можно представить как две функции. На рисунке наглядно представлено, чем отличается непрерывный сигнал от дискретного. Напряжение исходного изменяется плавно, обработанного прерывисто. Спектр дискретного периодически ступенчато совпадает с непрерывным.

Изменения дискретного происходят резко, через определённый период времени. Уровень в цифровой системе зашифровывается и любую величину напряжения описывают двоичным кодом. От частоты измерений зависит сглаженность преобразования и оригинальность передаваемых данных. Чем точнее описан уровень сигнала и чем чаще проводится и обрабатывается измерение, тем точнее совпадает спектр начального и переданного сигналов.

Какие системы связи используют цифровой сигнал а какие аналоговый

Несмотря на архаичность аналоговая технология ещё используется для телефонной и радио связи. Многие проводные сети до сих пор остаются аналоговыми. В основном это традиционные телефонные линии местных операторов. Но, для магистральной передачи данных связи уже повсеместно используют цифровые каналы. Так же аналоговая технология применяется в простых и дешёвых переносных радиостанциях.

Во всех вновь создаваемых системах используют цифровую технологию обработки сигнала. Это оптоволоконные и проводные линии, сигнализация и телеметрия, военная и гражданская промышленная связь. И конечно же на цифровое вещание переходит телевидение. Аналоговый способ передачи данных исчерпал себя. На смену пришла новая высококачественная и защищенная связь.

Какие бытовые устройства работают с аналоговыми сигналами?

Виды аналоговых устройств

  • Аналоговый компьютер
  • Аналоговый стик
  • Аналоговый фильтр
  • Аналоговая видеокамера
  • Плёночный фотоаппарат

Примеры передачи цифрового и аналогового сигналов

Для цифрового сигнала передача происходит примерно так:

  • Видеомагнитофон: Эй, телевизор, цвет пикселя с координатами 120х300 – зеленый.
  • Помеха: АААААААААААААА!
  • Телевизор: Какой? Не слышу!
  • Видеомагнитофон: Зеленый!
  • Телевизор: Ага, понял! Рисую зеленый.
  • Видеомагнитофон: Следующий цвет красный!
  • Телевизор: Прошу подтвердить, что цвет красный.
  • Видеомагнитофон: подтверждаю.
  • Телевизор: Ок! рисую.

и. т. д.
Передача для аналогового сигнала:

  • Видеомагнитофон: Эй, телевизор, цвет пикселя с координатами 120х300 – зеленый.
  • Помеха: АААААААААААААА!
  • Телевизор: Какой? Не слышу! Блин, нарисую синий.
  • Видеомагнитофон: Следующий цвет красный!
  • Помеха: БАХ! БУМ!
  • Телевизор: Красный вроде! Рисую.
  • Видеомагнитофон: Лопата!
  • Помеха: ПШШШШШШ!
  • Телевизор: ?!. Надо что-то рисовать ?! Пусть будет лопата!

Преимущества и недостатки цифрового и аналогового сигналов

Из вышесказанного можно сделать вывод, что при прочих равных условиях качество передачи информации с помощью цифры будет выше, чем при аналоговом представлении сигнала. В то же время при хорошей помехозащищенности две технологии могут конкурировать на равных.

Какие сигналы и величины называются аналоговыми?

Аналоговые сигналы
Аналоговым называется такой сигнал, который может быть представлен непрерывной линией из множества значений, определенных в каждый момент времени относительно временной оси.

Каким образом осуществляется передача информации?

В настоящее время передача информации на дальние расстояния осуществляется с использованием таких электрических устройств, как телеграф, телефон, телетайп, с использованием радио и СВЧ-связи, а также ВОЛС, спутниковой связи и глобальной сети Интернет.

Как понять, что вы смотрите – цифру или аналог

Старые телевизоры не способны самостоятельно принимать DTV. Для подключения «цифры» им требуется внешняя приставка. Современные устройства оснащаются специальным встроенным DVB-T2 тюнером.

Чтобы определить тип сигнала, нужно заглянуть в меню телевизора. Если в разделе «Источник» установлено ATV, идет просмотр аналогового видеоконтента.

Тип сигнала - ATV
Другие способы определения текущего типа вещания:

  • телеканалы, вещающие ATV, обозначены литерой А. Если ее нет, то канал показывает новое ТВ;
    Литера А
  • антенный штекер вытаскивают из гнезда и отводят на 0,5 см. Если изображение стало неразборчивым, но полностью не пропало, показывает аналоговое телевидение, если картинка полностью исчезла – DTV; Сигнал аналогового и цифрового ТВ
    Влияние ослабления сигнала на картинку
  • цифровое телевидение не показывает телеканалы «домашнего» региона (в МСК уже во всю вещает).
Будет интересно➡  Что такое селективность автоматических выключателей + принципы расчета селективности

Аналого-цифровой преобразователь

Аналого-цифровой преобразователь или АЦП — это устройство, преобразующее входной аналоговый сигнал в дискретный цифровой код. АЦП осуществляет операции дискретизации и квантования. Напомню, при дискретизации, отсчеты непрерывного сигнала берутся только в определенные моменты или дискреты времени, а при квантовании значение сигнала в эти моменты времени округляется до одного из фиксированных уровней, квантованные уровни затем представляются в двоичном виде. Таким образом, мы получаем цифровой сигнал из аналогового.

В большинстве АЦП есть устройство выборки и хранения, которые фиксируют и сохраняют значение напряжения на своем входе, в моменты замыкания ключа, а моменты замыкания ключа определяется задающим генератором, именно его частота и определяет частоту дискретизации выходного сигнала. Сигнал на выходе устройства выборки и хранения затем, округляется до одного из уровней квантования.

Как же АЦП понимает, с каким уровней квантования проассоциировать значение сигнала?

Рассмотрим простейший одноразрядный АЦП, компаратор. Он принимает на свой вход два значения напряжения, в том случае, если напряжение на первом входе больше чем на втором, он выдает логическую единицу, в противном случае 0.

Допустим, мы зафиксировали значение на втором ходе, это наш пороговый уровень, и когда изменяющейся во времени сигнал на первом входе больше этого уровня, устройство показывает 1, когда меньше 0.

Теперь представим, что компараторов несколько, когда входной сигнал превышает определённый уровень, срабатывает соответствующий компаратор, выходы всех компараторов затем преобразуется схемой приоритетного кодера в двоичное представление. АЦП в которых каждом из уровней квантования соответствует компаратор называются АЦП прямого преобразования или флеш АЦП.

Во-первых, АЦП отличаются по частоте дискретизации, она определяется задающим генератором. В зависимости от назначения частота дискретизации может измеряться в килогерцах, мегагерцах и даже гигагерц.

Далее идет разрядность, то есть количество бит в коде, которыми мы представляем отсчеты сигнала. От количества бит, зависит количество уровней квантования, оно определяется, как 2 в степени количество бит, если у нас 3 бита, то это 8 возможных уровней квантования, если у нас 8 бит это 256 уровней.

Диапазон входного сигнала это минимальные и максимальные значения напряжения на входе АЦП при которых устройство работает корректно. Слишком маленький сигнал АЦП может не различить и принять за нулевой уровень, слишком большие могут вызвать искажения, которые приведут к потере информации. Обычно АЦП оперируют единицами вольт.

Отношение сигнал-шум об этом параметре есть подробная статья.

Передаточная характеристика — это по определению зависимость числового эквивалента выходного кода от величины входного аналогового сигнала, она имеет вид ступенчатой функции.

Посмотрим на рисунок выше, окрестность значения входного напряжения 0,5 вольт будет приравнено к четвертому уровню квантования, то есть значение к примеру 0,52 или 0,47 также будут представлены кодом 100.

Если мы рассматриваем АЦП с равномерным квантованием, то длина всех ступенек будет одинаковой, в некоторых АЦП специально используются неравномерное квантование, но их мы пока не рассматриваем. Неравномерность ступенек в АЦП с равномерным квантование это одна из характеристик неидеальности, мы называем ее нелинейностью.

Нелинейность АЦП — это отличие реальной передаточной характеристики от линейной.

Линейная система передает входной сигнал на выход, без изменения его формы, возможно усиление или аттенюация.

Нелинейная система искажает форму выходного сигнала. В том случае, когда характеристика отличается от прямой линии, форма пиков сигнала изменяется это называется нелинейным искажением, крайне нежелательно явление. При искажениях мы безвозвратно теряем информацию.

Для АЦП, желательно, чтобы в рабочем диапазоне входных сигналов формы передаточных характеристик аппроксимировались прямой, но на практике небольшие отклонения все же присутствуют, поэтому для всех АЦП производитель указывает параметры интегральной и дифференциальной нелинейности.

В АЦП происходит округление реального значения аналогового сигнала. Точность представления, то насколько близок уровень квантования к реальному значению зависит от разрядности АЦП, количества бит.

Сигнал ошибки или разницы мы называем шумом квантования, хотя шумом его можно считать только в рамках математической модели, так как он зависит от сигнала.

Если мы квантуем непрерывный сигнал, то и шум квантования будет непрерывным. Если мы говорим о квантовании дискретного сигнала, то и на ошибки также будет дискретным. Понятно, что для того чтобы уменьшить шум квантования надо повышать разрядность АЦП, но из-за этого увеличивается стоимость, энергопотребление, могут понизиться другие характеристики.

Существует техника уменьшения влияния шума квантования без увеличения разрядности, и с ними вы можете ознакомиться самостоятельно при желании.

Джиттер это фазовый шум вызванный нестабильностью задающего генератора. Когда мы рассматриваем идеальный процесс дискретизации непрерывного сигнала, шаг временной сетке или период дискретизации неизменен, но в реальности импульсы задающего генератора могут идти не через равные промежутки времени, это приводит к тому что мы передаем устройству выборки и хранения не совсем то значение, которое должны были бы передать в случае идеально ровной временной сетки.

Эти отклонения, от так называемых реальных значений, также можно представить в виде дискретного шума. Нестабильность генераторов обычно измеряется в пика и фемпто секундах, поэтому на медленный АЦП она особо не влияет.

Шум квантования вносит гораздо больший вклад, но если сам сигнал изменяется очень быстро, если мы говорим о частотах дискретизации в сотни мегагерц и единицах гигагерц, то в этом случае уже джиттер может стать главной проблемой.

Предыдущая
РазноеЭлектромагнитное излучение – невидимый убийца.
Следующая
РазноеКак правильно соединить провода между собой
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять