LM317 регулируемый стабилизатор напряжения и тока

Характеристики LM317t

Приведем основные параметры стабилизатора LM317:

  • Входное напряжение, max: 40 В.
  • Выходное напряжение, min: 1,25 В.
  • Опорное напряжение (Vref): от 0,1 до 1,3 В.
  • Ток нагрузки, max: 1,5 А.
  • Нестабильность выходного напряжения: 0,1 %.
  • Ток Adj: 50…100 мА.
  • Корпус: TO-220, TO-92, TO-3, D2PAK.

Подробные параметры смотрите в datasheet на русском языке, который можно скачать в конце статьи.

Виды LM317

Микросхема продается в нескольких варианта корпуса, в зависимости от потребности в размерах, нагрузки и подключении, а также типу монтажа схемы — каждый может выбрать наиболее подходящий ему вариант.

Наиболее популярна LM317T в корпусе TO-220 на 1.5 Ампер. Это считается универсальным вариантом, так как может использоваться в навесном монтаже, а также поверхностном. Радиатор в таком корпусе позволяет отводить излишнее тепло и испытывать более серьезные нагрузки, чем его собратья, а при необходимости его можно прикрепить к большему радиатору.

Подключение LM317

LM317 имеет следующую конфигурацию выводов в разных корпусах:

Конфигурация выводов lm317

Минимальная схема подключения представляет собой два резистора сопротивления и три конденсатора, подключенных согласно схеме. В соответствии с характеристиками сопротивления и будет определяться напряжение на выходе.

Схема lm317

У LM317 два главных параметра: это его опорное напряжение, а также ток, истекающий на выводе подстройки. Опорное напряжение (Vref) — напряжение, которое стабилизатор поддерживает на сопротивлении R1. Оно нестабильно и разнится от партии к партии в среднем на 0.1В, поэтому для расчетов лучше держать в уме усредненное значение – 1.25В. Для серьезных же проектов стоит измерить его для каждого используемого экземпляра. Соответственно, следуя схеме, если замкнуть резистор R2, то на выходе мы получим опорное напряжение – 1.25В, а с увеличением вольтажа на R2 будет увеличиваться и выходное напряжение. Таким образом, LM317 постоянно сравнивает напряжение на выходе через резистивный делитель с опорным, поэтому, меняя сопротивление, мы меняем выходное напряжение.

Ток, утекающий на подстройке (Iadj) – паразитный. По заявлению производителей он составляет от 50 до 100 мкА, но на деле же может достигать и 500 мкА. Из-за этого для стабильности выходного напряжения сопротивление R1 не должно быть выше 240 Ом, чтобы через делитель не проходил ток менее 5 мА.

Все, что вам нужно – это подставить ваше значение R1 в это формулу R2=R1*((Uo/Uref)-1).

Кроме того, не забывайте об охлаждении. Чем больше разница входного и выходного тока, тем сильнее будет нагреваться стабилизатор, что приведет к проблемам с его работой. Параметров, описанных производителем, можно добиться, только используя дополнительное охлаждение в виде радиатора.

Примеры схем включения стабилизатора LM317

Типовые схемы включения микросхемы приведены в даташите. Стандартное применение — стабилизатор с фиксированным напряжением — рассмотрен выше.

Схема включения LM317 с переменным резистором R2.

Если вместо R2 установить переменный резистор, то выходное напряжение регулятора можно оперативно регулировать. Надо учитывать, что потенциометр будет слабым местом в схеме. Даже у переменных резисторов хорошего качества место контакта движка с проводящим слоем будет иметь некоторую нестабильность соединения. На практике это выльется в дополнительную нестабильность выходного напряжения.

Схема включения LM317 с двумя диодами D1 и D2.

Для защиты производитель рекомендует включить два диода D1 и D2. Первый диод должен защищать от ситуации, когда напряжение на выходе будет выше входного. На практике это ситуация крайне редкая, и может возникнуть только если со стоны выхода есть другие источники напряжения. Производитель отмечает, что этот диод также защищает от случая короткого замыкания на входе – конденсатор С1 в этом случае создаст разрядный ток противоположной полярности, что приведет микросхему к выходу из строя. Но внутри микросхемы параллельно этому диоду стоит цепочка из стабилитронов и резисторов, которая сработает точно также. Поэтому необходимость установки этого диода сомнительна. А D2 в такой ситуации защитит вход стабилизатора от тока конденсатора С2.

Будет интересно➡  Что такое импульсное реле

Схема включения LM317 с транзистором.

Если параллельно R2 поставить транзистор, то работой стабилизатора можно управлять. При подаче напряжения на базу транзистора, он открывается и шунтирует R2. Напряжение на выходе уменьшается до 1,25 В. Здесь надо следить, чтобы разница между входным и выходным напряжением не превысила 40 В.

Схема включения микросхемы LM317 с конденсатором, включенным параллельно переменному резистору.

Вредное воздействие контакта потенциометра на стабильность выходного напряжения можно уменьшить подключением параллельно переменному сопротивлению конденсатора. В этом случае защитный диод D1 не помешает.

Схема включения LM317 с внешним транзисторм.

Если выходного тока стабилизатора не хватает, его можно умощнить внешним транзистором.

Схема стабилизатора тока на LM317.

Из стабилизатора напряжения можно получить стабилизатор тока, включив LM317 по такой схеме. Выходной тока рассчитывается по формуле I=1,25⋅R1. Подобное включение часто используется в качестве драйвера для светодиодов – LED включается в качестве нагрузки.

Схема импульсного блока питания на LM317.

Наконец, необычное включение линейного стабилизатора – на его основе создана схема импульсного блока питания. Положительную обратную связь для возникновения колебаний задает цепь C3R6.

Микросхема LM317 имеет значительное количество слабых сторон. Но искусство создания схем и состоит в том, чтобы, используя плюсы стабилизатора, обходить недостатки. Все минусы микросхемы выявлены, даны советы по их нейтрализации. Поэтому LM317 пользуется популярностью у создателей профессиональной и любительской радиоаппаратуры.

Регулируемый блок питания (1.2-37В)

Все, что понадобится для его создания, это заменить R2 на переменный резистор, а также добавить трансформатор с диодным мостом на вход. При использовании стоит учитывать, что микросхема обладает опорным напряжением в 1.25В, поэтому оно и будет минимальным для данной схемы.

LM317 регулируемый стабилизатор напряжения и тока

Регулируемый блок питания (0-37В)

Если вам необходима полная регулировка с 0В, то производители схем предлагают подключить к схеме источник отрицательного напряжения на 10В.

LM317 регулируемый стабилизатор напряжения и тока

Вы можете намотать дополнительную катушку на трансформатор блока питания и подключить его выводы после диодного моста следующим образом:

Другая типовая схема lm317

Либо вы можете использовать источник отрицательного напряжения, который будет питаться от основной обмотки.

Таким образом, вы получите простейший лабораторный блок питания.

Светодиодный драйвер (Стабилизатор тока)

С помощью этой схемы вы можете запитывать достаточно мощные светодиоды и светодиодные ленты. Все, что нужно — это знать потребляемый ток и, исходя из него, подобрать сопротивление по формуле.

Светодиодный драйвер и lm317

В нем используется тот же принцип, что и в самой простой схеме, но вместо резистивного делителя установлен датчик тока. Чем больший ток потребляет нагрузка на выходе, тем большее падение напряжения будет наблюдаться на датчике. Оно отслеживается микросхемой, и она увеличивает или уменьшает напряжение для поддержания стабильного тока. Даже при коротком замыкании ток будет держаться на стабильном уровне, который был выставлен.

Зарядное устройство

Схема данного зарядного устройства взята из datasheet и имеет напряжение на выходе 6В с ограничением 0.6А. С помощью изменения сопротивления резисторов R1 и R2 возможно регулировать напряжение под ваши нужды, а при помощи резистора R3 – ток. Оно подойдет для питания аккумуляторов телефонов, инструментов и бытовой техники.

Зарядное устройство с lm317

Регулирование переменного напряжение

Так как два LM317 могут регулировать не только положительные, но и отрицательные колебания синусоиды, то с помощью них можно создать AC регулятор. Можно видеть, что схема довольно не сложная и не требует множества компонентов:

Схема AC регулятора

Применение LM317

Схемы, приведенные выше – лишь малая часть, основа, по сравнению с тем, что возможно сделать на этом стабилизаторе. Он может использоваться почти во всех схемах, которые требуют постоянного питания до 40 В. Вот некоторые сферы применения, описанные в официальном техническом документе данной микросхемы:

  • Персональные компьютеры
  • Цифровые камеры
  • ЭКГ
  • Интернет свитчи
  • Биометрические датчики
  • Драйверы электромоторов
  • Портативные зарядки
  • PoE
  • RFID считыватели
  • Бытовая техника
  • Рентгеновские аппараты

Как можно видеть, даже сам производитель рассчитывает на максимально широкое использования данного элемента, что уж говорить о самодельщиках, готовых представить самые необычные схемы с использованием LM317.

Как проверить LM317?

В отличие от транзисторов, данную микросхему невозможно проверить мультиметром. Такой способ никак не гарантирует правильную работу из-за большого количества внутренних элементов, не соединенных с выводами. Поэтому, если какой-то из них выйдет из строя, то проверить это мультиметром будет проблематично. Самый простой способ проверки работы LM317 — это создать простейший стенд на макетной плате, а запитать его можно будет всего лишь от батарейки.

Будет интересно➡  Диодный мост – что это такое?

Микросхема

Таким образом, вы сможете быстро убедиться в полностью рабочем состоянии элемента, даже если необходимо проверить несколько штук.

Повышение максимального выходного тока

Существует два способа повышения максимального выходного тока. Если вам необходимо получить больше 1.5А, то вы можете либо подключить несколько микросхем параллельно, либо подключить силовой транзистор.

В первом случае достаточно подключить на выход стабилизаторов резисторы с низким сопротивлением. Они нужны для выравнивания токов.

Чертёж lm317

Однако не всегда рационально использовать несколько микросхем. Поэтому нам на помощь приходит транзистор. В таком случае будет достаточно добавить его и резистор в качестве обвязки к нему.

Транзистор и lm317

Если нагрузка потребляет небольшой ток, то он будет проходить через микросхему, не затрагивая транзистор. А при повышении, почти весь ток будет проходить через транзистор, оставляя малую его часть стабилизатору. Но при использовании этой схемы внутренняя защита внутри LM317 от КЗ.

Datasheet, даташит

Datasheet на данный стабилизатор проще всего найти на сайте производителя Texas Instruments.

В даташите вы сможете найти наиболее точные характеристики и спецификации, а также графики, отражающие работу микросхемы. Помимо этого, там описаны некоторые из типовых схем, использования и подробное описание их настройки под различные нужды. А также рекомендации по использованию.

Производители LM317

Так как LM317 является самым популярным стабилизатором напряжения, то ее выпускают крупнейшие предприятия по производству микросхем:

  • Texas Instruments
  • STMicroelectronics
  • ONS
  • UTC

Где купить LM317?

Стабилизатор применяется крайне широко, поэтому проблем с покупкой не возникает, он доступен почти во всех интернет-магазинах радиоэлектронных компонентов. Но к нам этот товар, как и другие радиоэлектронные компоненты, попадает по крайне завышенной цене, поэтому выгоднее всего купить его на AliExpress по этой ссылке .

Рекомендую к просмотру:

Изготовление стабилизатора на LM-317 для светодиода своими руками

Для этого понадобятся следующие детали и устройства:

  • ИПТ (источник постоянного тока);
  • ИМС LM-317;
  • резистор R сопротивлением от 1 до 110 Ом и запасом мощности, рассчитанным по уже рассмотренной формуле;
  • светодиод.

ИПТ может быть импульсным или трансформаторным, включающим в себя выпрямительный блок из диодного моста и конденсатора (С = 1000-2000 мкФ). К закреплённому на радиаторе стабилизатору припаиваются согласно схеме резистор и светодиод. От ИПТ подаётся напряжение, как показано на схеме ниже.

LM317 регулируемый стабилизатор напряжения и тока
Схема стабилизатора тока для светодиода своими руками

Для установки подсветки на автомобиль, большего количества led-ламп можно увеличить ток стабилизатора до 3 А. Для этого в схему включают мощный транзистор КТ 818.

LM317 регулируемый стабилизатор напряжения и тока
Увеличение тока стабилизации

Безопасность при эксплуатации

Максимальное напряжение между входом и выходом не должно превышать 40 В. Мощность рассеивания не более 20 Вт. Температура пайки не должна превышать 260 °С, при соблюдении расстоянии от корпуса микросхемы более 1,6 мм и времени нагревания до 10 секунд. Температура хранения устройства должна находится в пределах от -65 до + 150 °С, рабочая температура не более + 150 °С.

Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Микросхема хорошо защищена от тепловой перегрузки и короткого замыкания контактов. Однако не стоит превышать допустимые параметры при эксплуатации, для избежания выхода её из строя и достижения максимально надежной работы.

Какие существуют аналоги

Существуют подобные микросхемы, разработанные в других фирмах других стран. Полными аналогами являются:

  • GL317;
  • SG317;
  • UPC317;
  • ECG1900.

Также выпускаются стабилизаторы с повышенными электрическими характеристиками. Больший ток могут выдать:

  • LM338 – 5 А;
  • LM138 – 5 А
  • LM350 – 3 А.

Если требуется регулируемый источник напряжения с верхним пределом в 60 В, надо применять стабилизаторы LM317HV, LM117HV. Индекс HV означает High Voltage – высокое напряжение.

Из отечественных микросхем полным аналогом является КР142ЕН12, но она выпускается только в корпусе ТО-220. Это надо учитывать при разработке печатных плат.

Таблица параметров разных вариантов исполнения LM317:

Part NumberКорпусРабочая температураМакс. ток нагрузкиНапряжение стабилизацииМакс. входное напряжениеМаркировка
на корпусе
Производитель
LM317KTO-30…+125 °C1.5 A1.2 … 37 V40 VLM317K STEEL P+
  • National Semiconductor
LM317AHTO-39-40…+125 °C0.5 A1.2 … 37 V40 VLM317AH P+
  • National Semiconductor
LM317HTO-390…+125 °C0.5 A1.2 … 37 V40 VLM317H P+
  • National Semiconductor
LM317ATTO-220-40…+125 °C1.5 A1.2 … 37 V40 VLM317AT P+
  • National Semiconductor
LM317BTTO-220-40…+125 °C1.5 A1.2 … 37 V40 VLM317B
  • STMicroelectronics
  • ON Semiconductor
LM317TTO-2200…+125 °C1.5 A1.2 … 37 V40 VLM317T
  • National Semiconductor
  • STMicroelectronics
  • ON Semiconductor
LM317STO-263-3
(D2PAK-3)
0…+125 °C1.5 A1.2 … 37 V40 VLM317S P+
  • National Semiconductor
LM317EMPSOT-2230…+125 °C1 A1.2 … 37 V40 VN01A
  • National Semiconductor
LM317AEMPSOT-223-40…+125 °C1 A1.2 … 37 V40 VN07A
  • National Semiconductor
LM317MDTTO-252-3
(DPAK-3)
0…+125 °C0.5 A1.2 … 37 V40 VLM317MDT
  • National Semiconductor
LM317AMDTTO-252-3
(DPAK-3)
-40…+125 °C0.5 A1.2 … 37 V40 VLM317AMDT
  • National Semiconductor
LM317D2T-TRTO-263-3
(D2PAK-3)
0…+125 °C1.5 A1.2 … 37 V40 VLM317D2T
  • STMicroelectronics
  • ON Semiconductor
LM317BD2TTO-263-3
(D2PAK-3)
-40…+125 °C1.5 A1.2 … 37 V40 VLM317BD2T
  • ON Semiconductor
LM317PTO-220FP0…+125 °C1.5 A1.2 … 37 V40 VLM317P
  • STMicroelectronics
LM317KTEKTE
(R-PSFM-G3)
0…+125 °C1.5 A1.2 … 37 V40 VLM317
  • Texas Instruments
LM317KTTTO-263-3
(D2PAK-3)
0…+125 °C1.5 A 1.2 … 37 V40 VLM317
  • Texas Instruments
LM317DCYSOT-2230…+125 °C1.5 A1.2 … 37 V40 VL3
  • Texas Instruments
LM317KCTO-2200…+125 °C1.5 A1.2 … 37 V40 VLM317
  • Texas Instruments
LM317MDTTO-252-3
(DPAK-3)
0…+125 °C0.5 A1.2 … 37 V40 VLM317M
  • Fairchild Semiconductor
LM317MTTO-2200…+125 °C0.5 A1.2 … 37 V40 VLM317M
  • Fairchild Semiconductor
LM317LCDSOIC-80…+125 °C0.1 A1.25 … 32 V35 VL317LC
  • Texas Instruments
LM317LCLPTO-920…+125 °C0.1 A1.25 … 32 V35 VL317LC
  • Texas Instruments
LM317LCPKSOT-890…+125 °C0.1 A1.25 … 32 V35 VLA
  • Texas Instruments
LM317LCPWTSSOP-80…+125 °C0.1 A1.25 … 32 V35 VL317LC
  • Texas Instruments
LM317LIDSOIC-8-40…+125 °C0.1 A1.25 … 32 V35 VL317LI
  • Texas Instruments
LM317LILPTO-92-40…+125 °C0.1 A1.25 … 32 V35 VL317LI
  • Texas Instruments
LM317LIPKSOT-89-40…+125 °C0.1 A1.25 … 32 V35 VLB
  • Texas Instruments
LM317LIPWTSSOP-8-40…+125 °C0.1 A1.25 … 32 V35 VL317LI
  • Texas Instruments
LM317LDSO-80…+125 °C0.1 A1.2 … 37 V40 VLM317L
  • STMicroelectronics
LM317LZTO-920…+125 °C0.1 A1.2 … 37 V40 VLM317LZ
  • STMicroelectronics
LM317MABDTGTO-252-3
(DPAK-3)
-40…+125 °C0.5 A1.2 … 37 V40 V317ABG
  • ON Semiconductor
LM317MABTGTO-220-40…+125 °C0.5 A1.2 … 37 V40 VLM317MABT
  • ON Semiconductor
LM317MADTRKGTO-252-3
(DPAK-3)
0…+125 °C0.5 A1.2 … 37 V40 V317MAG
  • ON Semiconductor
LM317MBDTGTO-252-3
(DPAK-3)
-40…+125 °C0.5 A1.2 … 37 V40 V317MBG
  • ON Semiconductor
LM317MBSTT3GSOT−223-40…+125 °C0.5 A1.2 … 37 V40 V317MB
  • ON Semiconductor
LM317MBTGTO-220-40…+125 °C0.5 A1.2 … 37 V40 VLM317MBT
  • ON Semiconductor
LM317MDTGTO-252-3
(DPAK-3)
0…+125 °C0.5 A1.2 … 37 V40 V317MG
  • ON Semiconductor
LM317MSTT3GSOT−2230…+125 °C0.5 A1.2 … 37 V40 V317M
  • ON Semiconductor
LM317MTG TO-2200…+125 °C0.5 A1.2 … 37 V40 VLM317MT
  • ON Semiconductor
LM317HVTO-30…+125 °C1.5 A1.25 … 57 V60 VLM317HV
  • Texas Instruments
LM317HVTTO-2200…+125 °C1.5 A1.25 … 57 V60 VLM317HVT P+
  • Texas Instruments
Будет интересно➡  Что такое катушка индуктивности и почему ее иногда называют дроссель

Отзывы

Как свидетельствуют отклики пользователей, рассматриваемый стабилизатор неплохо справляется со своими функциями. Особенно если это касается агрегации со светодиодными элементами, напряжением до 50 вольт. Упрощает обслуживание и эксплуатацию прибора возможность его регулировки и подключения в разных схемах. Нарекание на данное изделие имеется в том плане, что диапазон выдаваемых и подающих напряжений для него ограничен предельными нормами.

lm317 стабилизатор тока расчет

Итог

Стабилизатор вполне работоспособен и может быть использован как стабилизатор напряжения (при условии наличия нагрузки), так и стабилизатор тока. Также есть множество различных схем применения для увеличения выходной мощности, использования в качестве зарядного устройства для аккумуляторов и др. Стоимость сабжа вполне приемлемая, учитывая, что в оффлайне я могу купить такой минимум за 30 рублей, а в известном российском интернет магазине за 19 рублей, что существенно дороже обозреваемого.
На сём разрешите откланяться, удачи!

Предыдущая
РадиодеталиТриггер Т-типа (Счётный триггер)
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять