Естественные и искусственные источники света

Естественные и искусственные источники света

Что такое источник света

Источник света – это объект, излучающий электромагнитную энергию в той области спектра, которая воспринимается человеческим зрением. Согласно законам физики, если отдельные объекты нагреваются до определенной температуры, то начинают светиться.

По сути, источником света можно назвать любой светящийся объект – будь то солнце, жуки-светлячки или разнообразное осветительное оборудование, производимое современными заводами.

Виды источников света
Солнце – эталон для искусственного осветительного оборудования.

Общие понятия

Свет — это результат физического процесса, происходящего в атомах вещества. Атомы, получая энергию извне (нагрев, облучение), часть ее передают электронам. Электроны сначала возбуждаются, а затем начинают терять энергию, переходя на нижние энергетические уровни. Каждый переход происходит с излучением фотонов — частиц света, которые воспринимает наш глаз. Фотоны могут проявлять себя либо как волна, либо как частица.

Одной из главных характеристик электромагнитного излучения является длина волны. К видимому свету относятся излучения с длиной волны от 8*10-7 до 4*10-7 м, то есть от красного до фиолетового света.

Свет распространяется в вакууме со скоростью 300 000 км/с или 3*108 см/с. Это самая большая скорость в природе для любых частиц и взаимодействий.

Первые источники видимого света, которые человек изобрел для собственных нужд, использовали разные виды горючего топлива: дерево, жир, сало. В конце XIII швейцарец Аргант изобрел лампу с фитилем, в которую в качестве топлива заливался керосин. Американец Томас Эдисон изобрел лампочку накаливания в конце XIX века. И если лампа с фитилем давно превратилась в настоящий антиквариат, то лампочка накаливания до сих пор верой и правдой служит человеку.

Виды и классификации источников света

Все варианты можно разделить на два основных типа – естественные и искусственные источники. Исходить из этого при рассмотрении вопроса проще всего, так как информацию легко систематизировать.

Тепловые

Сюда относят всевозможные типы ламп накаливания, включая галогенные, а также электрические инфракрасные нагреватели и  угольные дуги.

Люминесцентные лампы

Люминесцентные лампы

Люминесцентные лампы (ЛЛ) — разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Эти лампы значительно меньше расходуют электроэнергию, чем лампы накаливания или даже галогенные лампы, а служат намного дольше (срок службы до 20 000 часов). Благодаря экономичности и долговечности эти лампы стали самыми распространенными источниками света. В странах с мягким климатом люминесцентные лампы широко применяются в наружном освещении городов. В холодных районах их распространению мешает падение светового потока при низких температурах. Принцип их действия основан на свечении люминофора, нанесенного на стенки колбы. Электрическое поле между электродами лампы заставляет пары ртути выделять невидимое ультрафиолетовое излучение, а люминофор преобразует это излучение в видимый свет. Подбирая сорт люминофора, можно изменять цветовую окраску испускаемого света.

Смешанного излучения

Такие виды ламп освещения одновременно используются тепловое и люминесцентное излучение. Примером могут служить дуги высокой интенсивности.

Светодиодные

К светодиодным источникам света относят все типы ламп и световых приборов с использованием светоизлучающих диодов.

Кроме того, существуют другие признаки по которым производится классификация ламп (по области применения, конструктивно-технологическим признакам и тому подобные).

Основные параметры источников света

Световые, электрические и эксплуатационные свойства электрических источников света характеризуют рядом параметров. Сравнение параметров нескольких источников света, для их использования в той или иной области применения, позволяет остановиться на наиболее подходящем из них. Сопоставляя параметры отдельных экземпляров одного и того же источника света, обращая внимание на место и время изготовления, можно судить о качестве и технологическом уровне их производства.

Будет интересно➡  Как работает выпрямитель напряжения

Перечислим  основные электрические характеристики ламп и в целом всех источников света:

Номинальное напряжение – напряжение, при котором лампа работает в наиболее экономичном режиме и на которое она рассчитывалась для ее нормальной эксплуатации. Для лампы накаливания номинальное напряжение равно напряжению питающей электрической сети. Обозначается такое напряжение Uл.н и измеряется в вольтах. Газоразрядные лампы такого параметра не имеют, так как напряжение разрядного промежутка определяется характеристиками  примененного для ее стабилизации пускорегулирующего аппарата (ПРА).

Номинальная мощностьPл.н – расчетная величина характеризующая мощность потребляемую лампой накаливания при ее включении на номинальное напряжение. Для газоразрядных ламп, в цепь которых включают пускорегулирующие аппараты, номинальная мощность считается основным параметром. Основываясь на ее значении, путем экспериментов, определяются остальные электрические параметры ламп. Нужно учесть, что для определения мощности потребляемой из сети нужно сложить мощности лампы и пускорегулирующего аппарата.

Номинальный ток лампы Iл.н – ток потребляемый лампой при номинальном напряжении и номинальной мощности.

Род тока – переменный или постоянный. Данный параметр нормируется только для газоразрядных ламп. Он влияет на другие параметры (кроме указанных ранее), которые изменяются с изменением рода тока, причем это относится к лампам, работающим только на постоянном или только на переменном токе.

Основными световыми параметрами источников света являются:

Световой поток, излучаемый лампой. Для измерения светового потока лампы накаливания ее включают на номинальное напряжение. У газоразрядных ламп измерение производят когда она работает на номинальной мощности. Световой поток обозначается буквой Ф (латинская фи). Единицей измерения светового потока является люмен (лм).

Сила света. Для некоторых видов специальных ламп накаливания вместо светового потока используются параметры средняя сферическая сила света или яркость тела накала. Для таких ламп они являются основными светотехническими параметрами. Используемые обозначения для силы света Iv, IvΘ, для яркости – L, их единицы измерения – соответственно кандела (кд) и кандела на квадратный метр (кд/м2).

Световая отдача лампы, это отношение светового потока лампы к ее мощности

ηv = Ф / P .

Единица световой отдачи – единица измерения параметра люмен на ватт (Лм/Вт). С помощью этого параметра можно оценить эффективность применения источников света в осветительных установках. Однако в качестве характеристики облучательных ламп используют другой параметр – величину отдачи потока излучения.

Стабильность светового потока – процентное отношение величины снижения светового потока в конце срока службы лампы к первоначальному световому потоку.

К эксплуатационным параметрам источников света относят параметры, характеризующие эффективность источника в определенных эксплуатационных условиях:

Полный срок службы τполн – продолжительность горения в часах источника света, включенного при номинальных условиях, до полного отказа (перегорание лампы накаливания, отказ в зажигании для большинства газоразрядных ламп).

Полезный срок службы τп – продолжительность горения в часах источника света, включенного при номинальных условиях, до снижения светового потока до уровня, при котором дальнейшая его эксплуатация становится экономически невыгодной.

Средний срок службы τ – основной эксплуатационный параметр лампы. Он представляет собой среднеарифметическое полных сроков службы групп ламп (не менее десяти) при условии, что среднее значение светового потока ламп группы к моменту достижения среднего срока службы осталось в пределах полезного срока службы, то есть при заданной стабильности светового потока. Это параметр особенно важен для ламп накаливания, так как увеличение их световой отдачи при прочих равных условиях приводит к сокращению срока службы. Так как экспериментальное определение срока службы приводит к выходу из строя испытуемых ламп, этот параметр определяется на определенном числе ламп с заданной степенью вероятности, рассчитываемой по законам математической статистики.

Динамическая долговечность – параметр, характеризующий срок службы ламп накаливания в условиях вибрации и тряски. Лампы с требуемой динамической долговечностью должны выдерживать определенное число циклов испытаний в установленном диапазоне частот.

Будет интересно➡  Как правильно подключить диммер

Для уточнения работоспособности ламп кроме понятия среднего срока службы используют понятие гарантийного срока службы, определяющего минимальное время горения всех ламп в партии. Этому понятию иногда придают коммерческий смысл, считая гарантийный срок службы временем, в течение которого должна гореть любая лампа.

Сравнительно ограниченная продолжительность горения источников света, особенно ламп накаливания, устанавливает требование к их взаимозаменяемости, что может быть осуществлено только при повторяемости параметров отдельных ламп.

Для обеспечения экономичности осветительной установки важны как начальный световой поток лампы, так и зависимость его спада от времени эксплуатации. С увеличением длительности эксплуатации осветительной установки снижается роль капитальных затрат в стоимости световой энергии. Отсюда следует, что осветительные установки с малым числом часов горения в год целесообразно выполнять, используя более дешевые лампы накаливания и, наоборот, в промышленных осветительных установках, где продолжительность горения составляет 3000 часов и более, рационально использовать более дорогие, чем лампы накаливания, газоразрядные источники света с высокой световой отдачей. Стоимость единицы световой энергии определяется также тарифом  на электроэнергию. При низких тарифах оправдано применение в осветительных установках ламп с относительно низкой световой отдачей и повышенным сроком службы.

Какие источники света используют в помещениях и на улице

Определение 2

Уличное освещение — средства искусственного увеличения оптической видимости на улице в темное время суток.

Как правило, осуществляется лампами, закрепленными на мачтах, столбах, путепроводах и других опорах. Для наружного освещения используют газоразрядные лампы высокого давления и светодиодные светильники, поскольку и те, и другие хорошо переносят перепады температур, имеют широкий диапазон мощности и длительный срок эксплуатации.

Для освещения помещений используют:

  • естественное освещение от прямых солнечных лучей и рассеянного света небосвода;
  • освещение, создаваемое искусственными источниками света (лампа накаливания, газоразрядные и светодиодные);
  • совмещение 1 и 2 — при недостатке естественного освещения подключаются искусственные излучатели.

При строительстве и эксплуатации жилых и промышленных зданий учитывают естественное освещение, так как оно необходимо для:

  • сохранения зрения человека;
  • повышения работоспособности и жизненного тонуса;
  • поддержания помещений в надлежащем санитарно-гигиеническом состоянии.

Интенсивность естественного освещения интерьера зависит от следующих факторов:

  • время суток и сезон года, ориентация зданий по сторонам света;
  • степень затенения света расположенными рядом зданиями, деревьями и т. п.;
  • облачность, присутствие в воздухе пыли и газов, которые поглощают солнечные лучи;

количество и расположение окон — на одной или двух наружных стенах, верхних перекрытиях или комбинация этих вариантов.

Современные источники искусственного освещения преобразуют электрическую энергию в световой поток.

Выбор необходимого уровня освещенности в производственных помещениях зависит от:

  • точности работы;
  • коэффициента отражения рабочей поверхности;
  • контраста между деталью и фоном;
  • времени, в течение которого требуется напряжение зрения;
  • наличия предметов, опасных для прикосновения.

Виды искусственного освещения:

общее — светильники размещаются в верхней зоне помещения равномерно или рядом с оборудованием;

местное — дополнительно к общему освещению подключаются светильники непосредственно на рабочих местах.

Чаще всего применяют и общее, и местное освещение.

Искусственное освещение в помещении приблизительно можно рассчитать следующим образом:

  1. Подсчитать число ламп в комнате или цехе, сложить их мощность в Ваттах.
  2. Полученную суммарную мощность разделить на площадь помещения. Результат выражается в Вт/м2.
  3. Умножить результат на специальный коэффициент е, показывающий, какое количество люксов дает удельная мощность, равная 1 Вт/м2.

Что важно знать и учитывать при выборе источника света

  • Мощность. От параметра зависит энергоэффективность искусственного источника света, а также ваш счет за электричество.
  • Светоотдача. Ламп с бОльшим показателем требуется меньше при прочих равных.
  • Цветопередача. Способность техники корректно отображать палитру окружающего мира.
  • Цвет излучения. В жилых помещениях отдают предпочтение теплому световому потоку (до 3000 К), в коммерческих и производственных – холодному (до 5000 К).
  • Эксплуатационный и гарантийный ресурс.

Световой поток

Выбираем источник света для дома

Для домашнего использования лучше остановиться на светодиодных приборах. Разнообразие форм и размеров позволяет реализовать любые типы подсветки. Вариативность количества светодиодов обеспечивает достаточную яркость освещения, а солидный эксплуатационный ресурс поможет надолго забыть о замене лампочек.

Будет интересно➡  Как сделать светильник своими руками — простые уроки и идеи

Распространение света

Давайте теперь рассмотрим, как свет распространяется в пространстве. Свет — это излучение, которое распространяется в вакууме с максимально возможной в природе скоростью (скоростью света), которая составляет c ≈ 300 000 км/c.

Основные свойства света были известны еще в древности. Ещё Древние греки на основании своих наблюдений пришли к выводу, что при распространении света возникают явления тени и полутени — оба явления являются доказательством того, что свет в однородной среде распространяется по прямой линии (прямолинейно). Тени людей, деревьев, зданий и других предметов хорошо наблюдаются на Земле в солнечный день.

Эксперимент

Попробуйте провести эксперимент для подтверждения этого наблюдения.

Опыт. Доказательство прямолинейного распространение света.

Что вам понадобится?

  • коробка для копировальной бумаги A4;
  • калька или бумага для завтрака (тонкая) формата A4;
  • чёрная самоклеящаяся плёнка или краска;
  • ножницы или нож для резки обоев;
  • толстая игла.

Инструкция.

  1. Вырежьте прямоугольник в крышке коробки, оставив около 1,5 см с каждой стороны.
  2. Приклейте лист кальки на внутреннюю сторону.
  3. Покройте внутреннюю часть второй части коробки черной матовой клейкой фольгой или покрасьте ее в черный цвет.
  4. Проделайте отверстие в центре дна коробки толстой иглой.
  5. Установите подготовленную крышку на коробку и плотно запечатайте ее по всему периметру.
  6. Поверните коробку с отверстием к какому-либо источнику света — что вы наблюдаете?

Итог эксперимента.

Опыт для подтверждения прямолинейного распространения света
Рис. 2. Распространение света в камере-обскуре

То, что мы построили, является прототипом камеры. Это устройство для проецирования трехмерного изображения на плоскую поверхность, с помощью которого можно наблюдать за миром. Если на место черной поверхности поместить фотопластинку или светочувствительную матрицу от цифровой камеры, то такое изображение можно было бы даже записать. Наш прибор, который носит латинское название «camera obscura» (камера-обскура), работает по принципу прямолинейного распространения света (см. рисунок 2 ниже).

Луч, выходящий из верхней части лампы, идет по прямой линии к отверстию в коробке. Он проходит через отверстие внутрь и попадает на экран, создавая изображение верхней части лампочки на нижней части экрана. Аналогично, луч, выходящий из нижней части лампы, направляется к отверстию в коробке, а затем в верхнюю часть экрана. Это создает перевернутое изображение лампы или других объектов.

Интересный факт! Древние египтяне использовали закон прямолинейного распространения света для установления колонн по прямой линии. Колонны располагались так, чтобы из-за ближайшей к глазу колонны не были видны все остальные.

Что не является источником света?

Не все предметы и объекты, которые кажутся светящимися, являются источниками света.

Планета Венера часто видна на небе перед восходом или сразу после захода солнца. Это третий по яркости объект на небе (после Солнца и Луны). Свет Венеры иногда настолько силен, что освещенные ею объекты отбрасывают тень. Однако этот объект вовсе не является источником света! Венера отражает солнечный свет настолько сильно, что кажется звездой. На самом деле, каждая планета, которую мы можем наблюдать в небе, кажется, сияет своим собственным светом — но это отраженный солнечный свет. Мы не можем считать планеты источниками света, потому что они не излучают свет, а только отражают его.

То же самое можно сказать и о Луне, которая в полнолуние очень хорошо освещает окружающий ландшафт и предметы. Луна также не излучает свет, а только отражает солнечный свет.

Помните! Не все объекты, которые излучают свет, являются источниками света. Объекты такого типа светятся отраженным светом. К ним относятся Луна и планеты, которые не излучают свет, а только отражают солнечный свет.

Предыдущая
ТеорияЧто такое чередование фаз по цвету и как его проверить?
Следующая
ОсвещениеКак правильно подключить светодиодный светильник
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять