Пьезоэлемент и пьезоэффект: как работает, что такое пьезоэлектрический эффект

Пьезоэлемент. Как работает пьезоэлемент и что это пьезоэффект?

Что такое пьезоэлектрические материалы?

Пьезоэлектрические материалы представляют собой материалы, которые обладают способностью генерировать внутренний электрический заряд от приложенного механического напряжения.

Некоторые вещества, встречающиеся в природе в природе, демонстрируют пьезоэлектрический эффект. К ним относятся:

  • кость,
  • кристаллы,
  • определенная керамика,
  • ДНК,
  • эмаль,
  • шелк,
  • дентин и многое другое.

Материалы, которые демонстрируют пьезоэлектрический эффект, также демонстрируют обратный пьезоэлектрический эффект (также называемый обратным или обратным пьезоэлектрическим эффектом). Обратный пьезоэлектрический эффект является внутренняя генерация механического напряжения в ответ на приложенное электрическое поле.

История пьезоэлектрических материалов

Кристаллы были первым материалом, использованным в ранних экспериментах с пьезоэлектричеством. Братья Кюри, Пьер и Жак впервые доказали прямой пьезоэлектрический эффект в 1880 году. Ученые расширили свои практические знания о кристаллических структурах и пироэлектрических материалах (материалах, которые генерируют электрический заряд в ответ на изменение температуры).

Они измерили поверхностные заряды следующих конкретных кристаллов, а именно:

  • тростникового сахара,
  • турмалина,
  • кварца,
  • топаза,
  • соли Рошеля (натрий-калиевая соль винной кислоты),

В итоге именно кварц и соль Рошеля продемонстрировали самые высокие пьезоэлектрические эффекты.

Однако братья Кюри не предсказывали обратный пьезоэлектрический эффект. Он математически выведен Габриэлем Липпманом в 1881 году. Затем Кюри подтвердили эффект и предоставили количественное доказательство обратимости электрических, упругих и механических деформаций в пьезоэлектрических кристаллах.

Пьезоэлемент. Как работает пьезоэлемент и что это пьезоэффект?

К 1910 году 20 классов природных кристаллов, в которых наблюдается пьезоэлектрический эффект, были полностью определены и опубликованы в Lehrbuch Der Kristallphysik — «Учебнике физики кристаллов». Но это оставалось малоизвестной и высокотехнологичной нишевой областью физики без каких-либо видимых технологических или коммерческих применений.

Пока не наступила война.

Мировая война

Первое технологическое применение пьезоэлектрического материала было в качестве ультразвукового детектора подводной лодки. Пластика-детектор сделана из преобразователя (устройства, которое переводит один вид энергии в другой) и гидрофон. Преобразователь изготовлен из тонких кристаллов кварца, вклеенных между двумя стальными пластинами.

Огромный успех ультразвукового детектора подводных лодок во время войны стимулировал интенсивное технологическое развитие пьезоэлектрических устройств. После Первой мировой войны пьезокерамика использовалась в картриджах фонографов.

Вторая мировая война

Применение пьезоэлектрических материалов значительно продвинулось во время Второй мировой войны из-за независимых исследований Японии, СССР и США.

В частности достижения в понимании взаимосвязи между кристаллической структурой и электромеханической активностью наряду с другими достижениями в исследованиях полностью изменили подход к пьезоэлектрической технологии. Впервые инженеры смогли манипулировать пьезоэлектрическими материалами для конкретного применения устройства вместо того, чтобы наблюдать свойства материалов и затем искать подходящие применения наблюдаемых свойств.

Пьезоэлемент. Как работает пьезоэлемент и что это пьезоэффект?

Эта разработка позволила создать множество связанных с войной применений пьезоэлектрических материалов, таких как сверхчувствительные микрофоны, мощные гидроакустические устройства, гидроакустические буи (небольшие буи с возможностью прослушивания гидрофона и радиопередачей для мониторинга движения океанских судов) и системы пьезозажигания для одноцилиндрового зажигания.

Сущность пьезоэффекта

Знаменитые физики установили, что при деформации некоторых кристаллов (горный хрусталь, турмалин и т.д.) на их гранях возникают электрические заряды. При этом разность потенциалов была невелика, но её уверенно фиксировали существовавшие в то время приборы, а соединив участки с разнополярными зарядами с помощью проводников, удавалось получить электрический ток. Явление фиксировалось только в динамике, в момент сжатия или растяжения. Деформация в статическом режиме пьезоэффект не вызывала.

Вскоре был теоретически обоснован и открыт на практике обратный эффект – при подаче напряжения кристалл деформировался. Выяснилось, что оба явления взаимосвязаны – если вещество проявляет прямой пьезоэффект, то ему присущ и обратный, и наоборот.

Явление наблюдается в веществах с кристаллической решеткой анизотропного типа (у которых физические свойства различны в зависимости от направления) с достаточной асимметрией, а также некоторые поликристаллические структуры.

В любом твердом теле приложенные внешние силы вызывают деформацию и механические напряжения, а в веществах, обладающих пьезоэффектом ещё и поляризацию зарядов, причём поляризация зависит от направления приложенной силы. При смене направления воздействия меняется и направление поляризации, и полярность зарядов. Зависимость поляризации от механического напряжения линейна и описывается выражением P=dt, где t – механическое напряжение, а d – коэффициент, называемый пьезоэлектрическим модулем (пьезомодулем).

Зависимость поляризации от механического напряжения.

Подобное явление происходит и при обратном пьезоэффекте. При изменении направления приложенного электрического поля изменяется направление деформации. Здесь зависимость также линейна: r=dE, где E – напряжённость электрического поля, а r – деформация. Коэффициент d одинаков при прямом и обратном пьезоэффекте у всех веществ.

Изменение направления приложенного электрического поля изменяется направление деформации.

На самом деле приведенные уравнения лишь оценочны. Фактические зависимости намного сложнее и определяются ещё и направлением сил относительно кристаллических осей.

Будет интересно➡  Как правильно спаять провода с помощью паяльника между собой

Пьезоэлемент

Пьезоэлемент – электромеханический преобразователь, изготавливаемый из пьезоэлектрических материалов, определенной формы и ориентации относительно кристаллографических осей, с помощью которого механическая энергия преобразуется в электрическую (прямой пьезоэффект), а электрическая в механическую (обратный пьезоэффект).

Конструктивно пьезоэлемент представляет из себя пьезокерамику с нанесенными электродами. Пьезоэлементы могут быть разнообразной формы: в виде дисков, колец, трубок, пластин, сфер и др. Для вибраторов и генераторов пьезоэлементы объединяют в пьезостек, чтобы достичь лучших характеристик.

Пьезоэлектрический эффект

Пьезоэлектрические вещества (пьезоэлектрики), в частности пьезокерамика, имеет то свойство, что при деформации под действием внешнего механического давления на их поверхности возникают электрические заряды. Этот эффект называется прямым пьезоэлектрическим эффектом и был открыт в 1880 г. братьями Кюри.

Справка: Первая статья Жака и Пьера Кюри о пьезоэлектричестве была представлена Минералогическому обществу Франции (Societe mineralogique de France) на сессии 8 Апреля 1880 года и позже Академии наук (Academie des Sciences) на сессии 24 августа 1880 года. Пьер и Жак Кюри впервые открыли прямой пьезоэлектрический эффект у кристалла турмалина. Они заметили, что если оказывать механическое давление на кристалл в определенном направлении, на противоположных сторонах кристалла возникают электрические заряды пропорциональные давлению и противоположной полярности. Позже они открыли подобный эффект у кварца и других кристаллов. В 1880 году Пьеру Кюри был только 21 год.

Вскоре после этого (в 1881 г.) был подтвержден и обратный пьезоэффект, а именно что такое вещество, расположенное между двумя электродами, реагирует на приложенное к нему электрическое напряжение изменением своей формы. Первый эффект в настоящее время используется для измерений, а второй – для возбуждения механических давлений, деформаций и колебаний.

Более детальные исследования пьезоэффекта показали, что он объясняется свойством элементарной ячейки структуры материала. При этом элементарная ячейка является наименьшей симметричной единицей материала, из которой путем ее многократного повторения можно получить микроскопический кристалл. Было показано, что необходимой предпосылкой для появления пьезоэффекта является отсутствие центра симметрии в элементарной ячейки.

Элементарная ячейка цирконата титоната свинца (ЦТС) при температуре выше точки Кюри и при температуре ниже точки Кюри

Здесь можно кратко пояснить пьезоэлектрический эффект на примере титаната бария, часто применяемой пьезоэлектрической керамики со сравнительно простой конструкцией элементарной ячейки. Титанат бария ВаТiO3, как и многие другие пьезокерамические вещества, аналогичен по структуре перовскиту (СаТiО3), по которому и назван этот класс материалов. Элементарная ячейка при температурах выше, критической, которая называется также точкой Кюри, является кубической. Если температура ниже этой критической, то элементарная ячейка тетрагонально искажается по направлению к одной из кромок. В результате изменяются и расстояния между положительно и отрицательно заряженными ионами (рисунок 1, для ВаТiO3 вместо Pb – Ba). Смещение ионов из их первоначального положения очень мало: оно составляет несколько процентов параметра элементарной ячейки. Однако такое смещение приводит к разделению центров тяжести зарядов внутри ячейки, так что образуется электрический дипольный момент. По энергетическим условиям диполи соседних элементарных ячеек кристалла упорядочиваются по областям в одинаковом направлении, образуя так называемые домены.

Неупорядоченная поляризация (слева) и упорядоченная поляризация доменов при наложениии сильного электрического поля

Направления поляризации доменов распределяются в поликристаллической структуре по статическому закону. Таким образом, неупорядоченные скопления отдельных микрокристаллов в структуре вещества, образующиеся только в спеченной керамики, в макроскопическом смысле вообще не могут давать никакого пьезоэлектрического эффекта. Только после так называемого процесса поляризации, в котором при наложении сильного электрического поля на керамику происходит выравнивание возможно большего числа доменов параллельно друг другу, удается использовать пьезоэлектрические свойства элементарных ячеек. Поляризация обычно проводится при температуре немного ниже температуры Кюри, чтобы облегчить ориентацию доменов. После охлаждения это упорядоченное состояние остается стабильным.

Современные средства проектирования позволяют рассчитать / промоделировать отдельно пьезоэлемент или пьезоэлектрический преобразователь целиком. По согласованию с Инженерными решениями Вы можете заказать расчет парметров пьезоэлектрического преобразователя

Механическое сжатие или растяжение, действующее на пьезоэлектрическую пластину параллельно направлению поляризации, приводит к деформации всех элементарных ячеек. При этом центры тяжести зарядов взаимно смещаются внутри элементарных ячеек, которые расположены теперь преимущественно параллельно, и в результате получается заряд на поверхности.

 Прямой пьезоэлектрический эффект

Пьезоэлектрический материал (керамический или кристаллический) помещают между двумя металлическими пластинами. Для генерации электрического заряда необходимо приложить механическое усилие (сжать или разжать). При приложении механического усилия на металлических пластинах начинает скапливаться электрический заряд:

 Прямой пьезоэлектрический эффект - фотография 2

Таким образом, пьезоэлектрический эффект действует как миниатюрный аккумулятор. Микрофоны, датчики давления, гидролокаторы и другие чувствительные устройства используют этот эффект для своей работы.

Будет интересно➡  Определение направления вектора магнитной индукции

Обратный пьезоэлектрический эффект

Он заключается в том, что при приложении электрического напряжения к пьезоэлектрическому кристаллу произойдет механическая деформация тела, под которой оно будет расширяться или сжиматься:

Обратный пьезоэлектрический эффект - изображение 3

Обратный пьезоэлектрический эффект значительно помогает при разработке акустических устройств.

Примером могут послужить звуковые колонки, сирены, звонки.

Преимущества таких динамиков в том, что они очень тонкие, а это делает их практически незаменимыми при использовании в мелких устройствах, например, в мобильных телефонах.

Также этот эффект часто используют медицинские ультразвуковые и гидроакустические датчики.

Пьезоэлектрические материальные уравнения

Поляризованные пьезоэлектрические материалы характеризуются несколькими коэффициентами и соотношениями. Четыре возможные формы для пьезоэлектрических материальных уравнений показаны ниже [13]:

  • Форма механическое напряжение – заряд
  • Форма механическое напряжение – электрическое напряжение
  • Форма деформация – заряд
  • Форма деформация – электрическое напряжение ,
  • где {T} – 6×1 вектор механического напряжения, Па,
  • {S} – 6×1 вектор механической относительной деформации (упругая деформация), м/м,
  • {D} – 3×1 вектор электрической индукции (электрическое смещение), Кл/м2,
  • {E} – 3×1 вектор напряженности электрического поля, В/м,
  • [cE/D] – 6×6 матрица коэффициентов упругой жесткости (при постоянной E/D), Н/м2
  • [sE/D] – 6×6 матрица коэффициентов упргой поддатливости (при постоянной E/D), м2/Н,
  • [εS/T] – 3×3 матрица диэлектрической проницаемости (для S = постоянная/T = 0), Ф/м,
  • [e] – 3×6 матрица пьезоэлектрических коэффициентов механического напряжения, Кл/м2 или Н/Вм,
  • [h] – 3×6 матрица пьезоэлектрических коэффициентов деформации, Н/Кл или В/м,
  • [d] – 3×6 матрица пьезоэлектрических коэффициентов заряда (относительной деформации), Кл/Н или м/В,
  • [g] – 3×6 матрица пьезоэлектрических постоянных электрического напряжения (давления), м2/Кл или Вм/Н,
  • t (верхний индекс) – транспонированная матрица

Альтернативный источник энергии посредством преобразователей

Одним из знаменитых и неисчерпаемых средств получения электричества является энергия волн. Такие станции монтируют непосредственно в водную среду. Это явление связано с солнечными лучами, которые нагревают массу воздуха, благодаря чему возникают волны. Вал данного явления имеет энергоемкость, которая определяется по силе ветра, ширине воздушных фронтов, продолжительности порывов.

Значение может колебаться на мелководье или достигать 100 кВт на один метр. Пьезоэлектрический преобразователь энергии волн работает по определенному принципу. Уровень воды поднимается посредством волны, в процессе воздух выдавливается из сосуда. Затем потоки пропускаются реверсирующейся турбиной. Агрегат вращается по определенному направлению, вне зависимости от движения волн.

Преимущественные характеристики устройств - фотография 27

Этот аппарат имеет положительную характеристику.

До сегодняшнего дня совершенствование конструкции не прогнозируется, потому что эффективность и принцип работы доказаны всеми существующими путями.

В процессе технического прогресса, возможно, будут построены плавучие станции.

Применение пьезоэлектрических материалов

Пьезоэлектрические материалы используются во многих отраслях промышленности, в том числе:

  • производство,
  • медицинское оборудование,
  • телекоммуникации,
  • автомобильная промышленность,
  • информационные технологии (ИТ).

Пьезоэлемент. Как работает пьезоэлемент и что это пьезоэффект?

Высоковольтные источники питания:

  • Электрические зажигалки. Когда вы нажимаете кнопку на зажигалке, кнопка заставляет небольшой подпружиненный молоток ударять по пьезоэлектрическому кристаллу, создавая ток высокого напряжения, который течет через зазор для нагрева и воспламенения газа.
  • Газовые грили или плиты и газовые горелки. Они работают так же, как и зажигалки, но в большем масштабе.
  • Пьезоэлектрический преобразователь. Он используется в качестве умножителя переменного напряжения в люминесцентных лампах с холодным катодом.

Пьезоэлектрические датчики

Ультразвуковые преобразователи используются в повседневной медицинской визуализации. Преобразователь представляет собой пьезоэлектрический устройство, которое действует и как датчик, и исполнительный механизм. Ультразвуковые преобразователи содержат пьезоэлектрический элемент, который преобразует электрический сигнал в механическую вибрацию (режим передачи или компоненты привода) и механическую вибрацию в электрический сигнал (режим или компонент датчика приема).

Пьезоэлектрический элемент обычно разрезают на 1/2 желаемой длины волны ультразвукового преобразователя.

К другим типам пьезоэлектрических датчиков относятся:

  • Пьезоэлектрические микрофоны.
  • Пьезоэлектрические звукосниматели для электроакустических гитар.
  • Сонарные волны. Звуковые волны генерируются и воспринимаются пьезоэлектрическим элементом.
  • Электронные барабанные пэды. Элементы обнаруживают удар палок барабанщиков о пэды.
  • Медицинская акселеромиография. Это используется, когда человек находится под наркозом и ему вводят миорелаксанты. Пьезоэлектрический элемент в акселеромиографе определяет силу, возникающую в мышце после нервной стимуляции.

Пьезоэлектрические приводы

Одно из преимуществ пьезоэлектрических приводов состоит в том, что высокое напряжение электрического поля соответствует крошечным микрометровым изменениям ширины пьезоэлектрического кристалла. Эти микромассы делают пьезоэлектрические кристаллы полезными в качестве исполнительных механизмов, когда требуется точное позиционирование крошечных объектов, например, в следующих устройствах:

  • музыкальные колонки,
  • пьезоэлектрические двигатели,
  • лазерная электроника,
  • струйные принтеры (кристаллы управляют выбросом чернил из печатающей головки на бумагу),
  • дизельные двигатели,
  • рентгеновские ставни.

Умные материалы

Умные материалы — это широкий класс материалов, свойства которых могут быть изменены контролируемым методом под воздействием внешнего воздействия, такого как pH, температура, химические вещества, приложенное магнитное или электрическое поле или напряжение.

Будет интересно➡  Кабель КГ: расшифровка, конструкция, технические характеристики

Пьезоэлектрические материалы соответствуют этому определению, потому что приложенное напряжение создает напряжение в пьезоэлектрическом материале, и, наоборот, приложение внешнего напряжения также производит электричество в материале.

Дополнительные интеллектуальные материалы включают сплавы с памятью формы, галохромные материалы, магнитокалорические материалы, термочувствительные полимеры, фотоэлектрические материалы и многие другие.

Практическое использование пьезоэффекта

Самое известное применение пьезоэлементов – в качестве элемента для зажигания. Пьезоэффект используется в карманных зажигалках или в кухонных воспламенителях для газовых плит. При нажатии на кристалл возникает разность потенциалов и в воздушном промежутке появляется искра.

Этим область применения пьезоэлементов не исчерпывается. Кристаллы, обладающие подобным эффектом, могут применяться в качестве датчиков деформации, но эту сферу использования ограничивает свойство пьезоэффекта проявляться только в динамике – если изменения остановились, сигнал перестает генерироваться.

Пьезокристаллы могут быть использованы в качестве микрофона – при воздействии акустических волн формируются электрические сигналы. Обратный пьезоэффект позволяет также (иногда одновременно) применять такие элементы в качестве звукоизлучателей. При подаче на кристалл электрического сигнала, пьезоэлемент начнет генерировать акустические волны.

Такие излучатели широко применяются для создания ультразвуковых волн, в частности, в медицинской технике. При этом можно использовать и резонансные свойства пластины. Она может применяться в качестве акустического фильтра, выделяющего волны только собственной частоты. Другой вариант – использование в звуковом генераторе (сирене, извещателе и т.п.) пьезоэлемента одновременно в качестве частотозадающего и звукоизлучающего элемента. В этом случае звук всегда будет генерироваться на резонансной частоте, и можно получить максимальную громкость с небольшими энергозатратами.

Пьезоэлектрический эффект.

Резонансные свойства используются для стабилизации частот генераторов, работающих в радиочастотном диапазоне. Пластинки из кварца выполняют роль высокостабильных и высокодобротных колебательных контуров в частотозадающих цепях.

Существуют фантастические пока проекты преобразовывать энергию упругой деформации в электрическую энергию в промышленных масштабах. Можно использовать деформацию дорожного покрытия под действием тяжести пешеходов или автомобилей, например, для освещения участков трасс. Можно применять энергию деформации крыльев самолета для обеспечения бортсети. Такое использование сдерживается недостаточным КПД пьезоэлементов, но опытные установки уже созданы, и они показали перспективность дальнейшего совершенствования.

Что ждет пьезоэлектрические материалы будущем?

Так что же ждет пьезоэлектрические материалы в будущем? Возникает захватывающая идея, что пьезоматериалы из нановолокна могут быть коммерчески использованы в качестве источника энергии. Они полагаются на механическое усилие для выработки электричества. Поэтому, если расположить их, например, на сенсорном экране, то они могут выступить в качестве подзарядки устройства. Конечно, часть созданной мощности идет на выполнение действия на сенсорном экране. Но есть вариант создания дополнительных ресурсов.

Два самых популярных материала, используемых для наногенераторов, — это полимер поливинилиденфторид (ПВДФ) и керамический цирконат-титанат свинца (PZT). ПВДФ демонстрирует более высокие пьезоэлектрические свойства, чем другие полимеры. Это связано с его полярной кристаллической структурой. В свою очередь PZT также имеет кристаллическую структуру и способен генерировать гораздо более высокие напряжения, чем другие пьезоэлектрические материалы для сбора энергии. Он также механически более прочен, особенно в форме нанопроволоки.

Пьезоэлемент. Как работает пьезоэлемент и что это пьезоэффект?

Промышленный дизайнер Чон-Хун Кимхас придумал блестящую идею использования пьезоэлектричества для питания автомобиля. Такие устройства, которые заряжают аккумуляторы, получают энергию от вибраций, возникающих при движении машины. Эта технология не производит выбросов и не зависит от ископаемого топлива, что делает ее экологически чистой.

Другой промышленный дизайнер, Пол Фригу, разработал мобильный телефон, который может заряжаться сам! Модель Zeri использует термоэлектрические и пьезоэлектрические системы. Первый использует изменения температуры для генерации заряда; второй — колебания воздуха. Эти две функции делают смартфон на 100% экологически чистым.

Мексиканец Альберто Вильярреал создал пару обуви, которая освещает путь ее владельцу. Используя кинетическую энергию ходьбы или бега, электролюминесцентные полимеры могут производить свет. Эти эффекты буду полезны для бегунов.

Следующая инновационная технология — в секторе планшетов. Использование регенеративного ввода на сенсорном экране вполне может стать предпочтительным способом зарядки этих популярных гаджетов. В среднем (статистически) средний человек нажимает на сенсорный экран 1 000 раз в день. Этого более чем достаточно для питания планшета.

Напоследок, пожалуй, самый интересный пьезоэлектрический гаджет — душ. Разработанный финскими, мексиканскими и немецкими инженерами, он содержит множество крошечных нанопроволок. Эти нанопровода используют энергию проходящей воды для производства электричества, которое используется для нагрева воды. Устройство также имеет сенсорные панели, которые контролируют количество использованной воды и подсчитывают время, проведенное пользователем в душе. Также имеется регулятор, который контролирует давление воды.

Предыдущая
РазноеЧто такое однолинейная схема электроснабжения и какие требования для её проектирования?
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять