Электрическое сопротивление проводников. Единицы сопротивления

Что такое сопротивление?

Сопротивление (электрическое сопротивление) — это свойство какого-либо проводника оказывать сопротивление электрическому току, проходящему через него. Вот так все просто!

Давайте проведем аналогию с гидравликой. В нашем случае получается, что проводник электрического тока — это шланг или труба. Теперь давайте подумаем, какой из предметов будет оказывать бОльшее сопротивление потоку воды: садовый шланг или нефтяная труба?

садовый шланг

нефтяная магистраль

Понятное дело, что садовый шланг, так как его диаметр в разы меньше, чем диаметр нефтяной трубы.

Тогда другой вопрос. Какой шланг будет обладать бОльшим сопротивлением потоку воды с учетом того, что их длины и диаметры равны?
гофрированный шланг
гладкий шланг

Разумеется, гофрированный. Вода будет «цепляться» за его стенки, что приведет к тому, что они будут мешать потоку воды.

Тогда еще вот такая задачка. Есть два абсолютно одинаковых шланга, но один длиннее, а другой короче. Какой из шлангов будет оказывать бОльшее сопротивление потоку воды?
Что такое сопротивление
Что такое сопротивление
Что такое сопротивление

Думаю тот, который длиннее. Ответ очевиден.

Физический принцип сопротивления

Проще всего объяснить это по аналогии с водопроводной трубой. Представьте себе, что вода — некое подобие электрического тока, образуемого направленным движением электронов в проводнике, а напряжение — аналог давления (напора) воды. Сопротивление — это та сила противодействия среды их движению, которую электронам или воде приходится преодолевать, в результате чего производится работа и выделяется теплота. Именно такая модель представлялась в 1820-е годы Георгу Ому, когда он занялся исследованием природы происходящего в электрических цепях.

В водопроводной трубе всё обстоит так, что чем выше давление воды, тем относительно большая доля энергии расходуется на преодоление сопротивления в трубах, поскольку в них усиливается турбулентность потока. Из этого исходил Ом, приступая к опытам по измерению зависимости силы тока от напряжения. И очень скоро выяснилось, что ничего подобного в электрических проводниках не происходит: сопротивление вещества электрическому току вовсе не зависит от приложенного напряжения. В этом, по сути, и заключается закон Ома, который (для отдельного участка цепи) записывается очень просто:

V = IR

где V — напряжение, приложенное к участку цепи, I — сила тока, а R — электрическое сопротивление участка цепи.

Сегодня мы понимаем, что электрическая проводимость обусловлена движением свободных электронов, а сопротивление — столкновением этих электронов с атомами кристаллической решетки. При каждом таком столкновении часть энергии свободного электрона передается атому, который, в результате, начинает колебаться более интенсивно, и в результате мы наблюдаем нагревание проводника под действием электрического тока. Повышение напряжения в цепи никак не сказывается на доле тепловых потерь такого рода, и соотношение напряжения и электрического тока остается постоянным.

Однако, когда Георг Ом экспериментально открыл свой закон, атомная теория строения вещества находилась в зачаточном состоянии, а до открытия электрона оставалось несколько десятилетий. Таким образом, для него формула V = IR была чисто экспериментальным результатом. Сегодня мы имеем достаточно стройную и, одновременно, сложную теорию электропроводности и понимаем, что закон Ома в его первозданном виде — всего лишь грубое приближение.

Однако это не мешает нам с успехом использовать его для расчета самых сложных электрических цепей, использующихся в промышленности и быту. Единица электрического сопротивления системы СИ называется Ом в честь этого выдающегося ученого.

Роль проводника тока

Если к веществу или материалу обладающему проводящей способностью, подключить источник ЭДС, то по нему начинает протекать электрический ток. Свободные электроны вещества при этом начинают направленное движение от отрицательного полюса к положительному, т.к они являются носителями отрицательного заряда.

Во время направленного движения электроны ударяются об атомы материала и передают им некоторую часть своей энергии, из-за этого происходит нагрев проводника по которому проходит ток. А электроны после столкновения замедляют свое движение. Но электрическое поле их опять ускоряет, поэтому они продолжают свое направленное движение к плюсу.

Этот процесс может идти практически бесконечно, пока вокруг проводника имеется электрическое поле созданное источником электродвижущей силы. Получается, что чем больше препятствий попадется на пути следования электронов, тем выше значение сопротивления.

В различных веществах имеется разное количество свободных электронов, а атомы, между которыми свободные носители заряда перемещаются, обладают различным местом расположения. Поэтому сопр. проводников току зависит, в первую очередь от материала, из которого они сделаны, от площади и длины поперечного сечения.

Если сравнить два проводника сделанные из одинакового материала, то более длинный имеет большее R при равных площадях поперечных сечений, а с большим поперечным сечением имеет более низкое сопр. при равных длинах. Рассмотрим практический пример: Подключим лампочку накаливания на 60Вт в розетку с сетевым напряжением. Спираль лампочки начинает создавать потоку электронов с потенциалом в 220В некоторое препятствие.

Если эта преграда на пути электронов окажется слишком маленькой лампочка перегорит. Если слишком большое – накальная нить будет гореть очень слабо. А вот если оно будет “оптимальное, тогда лампочка будет гореть нормально, выделяя при этом и тепло. Вырабатываемое тепло называют “потерянной” энергией, так как часть энергию затрагивается на никому ненужный нагрев.

Что такое электрическое удельное сопротивление? Из формулы закона Ома можно записать, что электрическое сопротивление является физической величиной, которую можно вычислить как отношение напряжения в проводнике к силе протекающего в нем тока.

Итак, исходя из опыта с лампочкой чуть выше можно сделать вывод, что электрическое сопротивление проводника является физической величиной, которая указывает на свойство вещества преобразовывать электрическую энергию в тепловую. (R= ρ × l)/S ρ — удельное сопротивление материала проводника, Ом·м, l — длина, м, и S — площадь сечения, м2. Удельное электрическое сопротивление является также физической величиной, которая равна сопротивлению метрового проводника с площадью сечения в один метр квадратный. На практике, сечение измеряют в квадратных миллиметрах.

Будет интересно➡  Антенна для FM радио своими руками. Как сделать антенну для радио своими руками?

Поэтому и удельное электрическое сопротивление проще считать в Ом × мм2 / м, а площадь подставлять в мм2. Формула выше говорит о том, что удельное сопр. прямо пропорционально удельному сопр. материала, из которого он сделан, а также его длине и обратно пропорционально площади поперечного сечения проводника.

Сопр. проводников зависит также от температуры. Так у элементов из металла с повышением температуры R увеличивается. Зависимость эта сложная, но в относительно узких пределах температурного изменения (примерно до 200° Цельсия) можно условно считать, что для каждого металла существует определенный, так называемый температурный, коэффициент сопротивления (альфа), который выражает определенный прирост сопротивления дельта r при изменении температуры на один градус цельсия, отнесенный к 1 ом начального значения сопротивления. Таким образом, температурный коэффициент удельного сопротивления будет равен α = r2-r1/r1(T2-T1) и прирост сопр. будет равен Δr=r2-r1=αr2(T2-T1)

Например, у медного линейного провода при температуре T1 = 15° r1 = 50 ом, а при температуре T2 = 75° — r2 — 62 ом. Поэтому, дельта при изменении температуры на 75 — 15 = 60° будет равно 62 — 50 = 12 ом. Т.е, дельта, соответствующий изменению температуры на 1°, равен: 12/60=0,2 От чего зависит удельное сопротивление.

Во-первых, от материала проводника. Чем больше значение ρ, тем хуже будет пропускная токовая способность. Во-вторых, от длины провода – с увеличением длины сопротивление увеличивается. В-третьих, от толщины. У более толстого проводника, более низкое сопротивление. И в-четвертых, от температуры проводника.

Если он из металла, то их удельное сопротивление возрастает с ростом температуры. В исключение можно поместить специальные сплавы – их электрическое удельное сопр. практически не изменяется при нагревании. Например: никелин, константан и манганин. А вот у жидкостей с нагревом, удельное сопротивление уменьшается.

Связь с удельной проводимостью в изотропных материалах, выражется формулой: ρ = 1 / σ Где σ – удельная проводимость. Явление сверхпроводимости Предположим температуру материала будем уменьшать, то удельное сопротивление при этом будет также снижаться. Есть предел, до которого можно снизить температуру – абсолютный нуль.

В численном выражении равен —273°С. Ниже этого значения температур просто не существует. При этом значении удельное сопротивление любого проводника будет равно нулю. так как при абсолютном нуле атомы кристаллической решетки полностью перестают колебаться. В результате электронное облако проходит между узлами решетки, не соударяясь с ними. Удельное сопр. материала становится равным нулю, что открывает возможности для получения бесконечно огромных токовых уровней в проводниках малого сечения. Явление сверхпроводимости открывает фантастические перспективы для развития электротехники и электронной техники. Но пока еще имеются некоторые сложности, связанные с получением в быту сверхмалых температурных значений, требуемых для создания нужного эффекта. Когда эти проблемы смогут преодалеть, электротехника шагнет на принципиально новый уровень развития.

Единицы и размерности

Размерность электрического сопротивления в Международной системе величин: dim R = L2MT −3I −2. В Международной системе единиц (СИ), основанной на Международной системе величин, единицей сопротивления является ом (русское обозначение: Ом; международное: Ω). В системе СГС как таковой единица сопротивления не имеет специального названия, однако в её расширениях (СГСЭ, СГСМ и гауссова система единиц) используются [3] :

  • статом (в СГСЭ и гауссовой системе, 1 statΩ = (109 c −2) с/см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·1011 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер );
  • абом (в СГСМ, 1 abΩ = 1·10−9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер ).

Размерность сопротивления в СГСЭ и гауссовой системе равна TL−1 (то есть совпадает с размерностью обратной скорости, с/см), в СГСМ — LT−1 (то есть совпадает с размерностью скорости, см/с) [4] .

Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом−1), в системе СГСЭ (и гауссовой) статсименс и в СГСМ — абсименс [5] .

Формула расчета

Расчет электрического сопротивления делается по специальной формуле. Она состоит из следующих значений:

  • «I» — сила тока, воздействующая на проводник в амперах;
  • «U» — величина электрического напряжения в вольтах;
  • «R» — величина электрического сопротивления проводника в омах.

Формула выглядит следующим образом: I=U/R.

Зная рабочее напряжение и силу тока, можно легко вычислить рабочее сопротивление. Например, электрическая печь работает от напряжения 240 вольт, при силе тока 2 ампера.

240/2=120 Ом.

Рабочее сопротивление — определяющий параметр при эксплуатации электрооборудования и его ремонте.

При повышении сопротивления значительно снижается проводимость, а значит и сила тока в цепи. При снижении сопротивления, сильно увеличивается сила тока.

Зависимость сопротивления от напряжения и силы тока

Эти особенности проводников часто используются инженерами. Например, для получения высокой температуры, используется спираль с большим сопротивлением. И наоборот, для того, чтобы загорелась лампа накаливания, используется вольфрамовая спираль с очень низким сопротивлением.

Как известно любое физическое воздействие влечет за собой выделение тепловой энергии. При помощи значения проводимости можно легко рассчитать количество выделяемого тепла или Ватт. Делается это при помощи формулы: Вт=А×Ом.

Зависимость сопротивления от температуры

Электропроводность всех материалов зависит от их температуры. В металлических проводниках при нагревании размах и скорость колебаний атомов в кристаллической решетке металла увеличиваются, вследствие чего возрастает и сопротивление, которое они оказывают потоку электро­нов. При охлаждении происходит обратное явление: беспорядоч­ное колебательное движение атомов в узлах кристаллической решетки уменьшается, сопротивление их потоку электронов пони­жается и электропроводность проводника возрастает.

В природе, однако, имеются некоторые сплавы: фехраль, константан, манганин и др., у которых в определенном интервале температур электрическое сопротивление меняется сравнительно мало. Подобные сплавы применяют в технике для изготовления различных резисторов, используемых в электроизмерительных при­борах и некоторых аппаратах для компенсации влияния темпера­туры на их работу.

О степени изменения сопротивления проводников при измене­нии температуры судят по так называемому температурному ко­эффициенту сопротивления а. Этот коэффициент представляет собой относительное приращение сопротивления проводника при увеличении его температуры на 1 °С. В табл. 1 приведены значения температурного коэффициента сопротивления для наиболее приме­няемых проводниковых материалов.

Будет интересно➡  Замена штекера зарядки mini usb на micro usb. Микро усб схема распайки зарядки. Распиновка micro usb 5 pin для зарядки

Сопротивление металлического проводника Rt при любой тем­пературе t

Rt = R [ 1 + ? (t — t) ] (6)

где R— сопротивление проводника при некоторой начальной температуре t (обычно при + 20 °С), которое может быть подсчитано по формуле (5);

t— t — изменение температуры.

Свойство металлических проводников увеличивать свое сопро­тивление при нагревании часто используют в современной технике для измерения температуры. Например, при испытаниях тяговых двигателей после ремонта температуру нагрева их обмоток определяют измерением их сопротивления в холодном состоянии и после работы под нагрузкой в течение установленного периода (обычно в течение 1 ч).

Исследуя свойства металлов при глубоком (очень сильном) охлаждении, ученые обнаружили замечательное явление: вблизи абсолютного нуля (— 273,16 °С) некоторые металлы почти пол­ностью утрачивают электрическое сопротивление. Они становятся идеальными проводниками, способными длительное время пропус­кать ток по замкнутой цепи без всякого воздействия источника электрической энергии.

Это явление названо сверхпроводимостью. В настоящее время созданы опытные образцы линий электропере­дачи и электрических машин, в которых используется явление сверхпроводимости. Такие машины имеют значительно меньшие мас­су и габаритные размеры по сравнению с машинами общего назна­чения и работают с очень высоким коэффициентом полезного дей­ствия.

Линии электропередачи в этом случае можно выполнить из проводов с очень малой площадью поперечного сечения. В пер­спективе в электротехнике будет все больше и больше использо­ваться это явление.

Как найти сопротивление в цепи?

Его можно узнать из закона Ома, который связывает силу тока, напряжение и сопротивление. В этом случае, оно рассчитывается по формуле

формула сопротивления через закон Ома
формула сопротивления через закон Ома

где

R — сопротивление, Ом

U — напряжение на концах проводника, Вольты

I — сила тока, текущая через проводник, Амперы

То есть нам достаточно замерить напряжение на концах какого-либо проводника и измерить силу тока, проходящую через него. После применить формулу и рассчитать сопротивление проводника.  Давайте для закрепления решим простую задачу.

Задача

Рассчитать сопротивление проводника, если известно, что на него подают напряжение 5 Вольт и сила тока, проходящая через него 0,1 Ампер.

Решение

Используем формулу
формула сопротивления через закон Ома

решение задачи на сопротивление

В электронике и электротехнике используют специальные радиоэлементы, которые обладают сопротивлением электрическому току — резисторы. Более подробно про них можно прочитать в этой статье.

постоянные резисторы

Также вот вам видео, где очень умный преподаватель объясняет, что такое сопротивление

Как измерить сопротивление мультиметром

Для проверки не нужно подключаться к сети. Батарейка даёт скромное напряжение, значит, не нужен иной источник тока. Теперь предметно поговорим о том, как измерить сопротивление мультиметром.

Подготовка к проведению измерений

Перед тем как измерить сопротивление мультиметром, следует выбрать нужный режим. Для этого надо повернуть переключатель, находящийся в центре панели прибора так, чтобы он указывал на соответствующий значок. Сопротивление на мультиметре обозначается греческой буквой Ω.

Как правило, знак сопротивления находится около целого ряда цифр. Они обозначают максимальные значения возможных диапазонов измерений. На некоторых моделях мультиметров цифры могут отсутствовать. Это означает, что прибор способен в автоматическом режиме определить оптимальный диапазон измерений.

Обозначение сопротивления на разных моделях мультиметров
Обозначение сопротивления на разных моделях мультиметров

Если ожидаемое значение сопротивления известно, то требуется выбрать ближайшее большее значение. В том случае, когда нужных данных нет, сначала устанавливают максимальное значение и при необходимости переходят к меньшему.

Для работы необходимо подключить щупы. Используются чёрный и красный. Первый устанавливают в разъём с надписью COM, второй — в соседний. Разъём с надписью 10 или 20 Ампер предназначен для измерения силы тока и при работе с сопротивлением не применяется.

Гнезда для подсоединения щупов
Гнезда для подсоединения щупов

Иногда мастера интересует не точное значение сопротивления, а наличие или отсутствие обрыва. В этом случае переключатель режимов нужно установить так, чтобы он указывал на обозначение диода (треугольник и вертикальная черта у его угла). Таким образом будет включён режим, с помощью которого можно прозвонить радиоэлемент.

Если на дисплее при использовании режима прозвонки отображается «1», то это указывает на бесконечно большое значение сопротивления. Следовательно, цепь разорвана. Наличие какого-либо числового значения свидетельствует о том, что обрыва нет.

Подключаем щупы

На корпусе мультиметра есть гнезда, в которые нужно вставить щупы. Чаще всего черный вставляется в отверстие с надписью СОМ, а красный в гнездо VΩmА. Но надписи могут отличаться, обязательно изучите инструкцию к мультиметру. Также советуем к прочтению статью о том, как пользоваться мультиметром. Она поможет разобраться, какие щупы к чему подключать, и в других моментах.

Проводим измерения

Теперь нужно дотронуться наконечниками контактов элемента, в котором нужно измерить сопротивление.

Помните, что наше тело тоже проводит ток, и у него есть сопротивление. Поэтому исключите прикосновение рук к контактам. В крайнем случае можете прижимать пальцами только одной руки контакт к щупу, но другой рукой этого делать нельзя, иначе показания будут неправильными.

Электрическое сопротивление проводников. Единицы сопротивления

Остаётся посмотреть на экран, чтобы увидеть значение сопротивления. Но учтите:

  1. Если показан 0, то нужно уменьшить диапазон измерений и провести измерение сопротивления мультиметром заново.
  2. Если вы увидели «ol» или «over» или «1», диапазон нужно увеличить. Кроме того, цифра 1 может указывать, что в сети нет тока из-за обрыва.

Определение сопротивления переменного резистора

Иногда используются резисторы, в которых можно установить любое необходимое значение в заданном диапазоне. Для этой цели пользуются ручкой регулировки. Такой резистор обычно имеет три вывода. Сопротивление между первым и третьим выводом является постоянной величиной, а между 2 и 1 или 2 и 3 будет меняться в соответствии с положением ручки регулировки.

Переменный резистор
Переменный резистор

Измерение сопротивления переменного резистора мультиметром выполняется следующим образом:

  1. Нужно провести измерения между выводами 1 и 3. Значение сопротивления в этом случае должно равняться диапазону принимаемых значений.
  2. Далее следует проверить сопротивление тестером между любой из пар: 2 и 1 или 2 и 3. Щупы прикладывают к контактам и вращают ручку регулировки резистора. Показатели на дисплее должны равномерно уменьшаться или увеличиваться от нуля до номинального значения.
Будет интересно➡  Как правильно подключить трехфазную розетку. Схема подключения трехфазной розетки в 4 контакта

Если полученные значения соответствуют характеристикам детали, то она прошла проверку. В противном случае резистор является неисправным. Чаще всего исчезает контакт токосъемника. В этом случае при проверке на дисплее отображается значок бесконечности.

Измерение резисторов с небольшим номиналом

При использовании мультиметра при измерении сопротивления возможна погрешность, достигающая 10% от полученного результата. При небольших номиналах это может быть слишком много. Например, стоит учитывать, что щупы сами имеют сопротивление величиной 0.3–0.7 Ом. В таком случае выгодно применять особую методику проведения процедуры. Далее будет рассказано, как замерить сопротивление небольшого номинала на мультиметре.

Если ожидается, что величина сопротивления составит примерно 1.5 Ома, то необходимо перед измерением создать цепь как на рисунке ниже. В указанном случае потребуется приготовить ещё один резистор на 2.7 Ома с погрешностью, не превышающей 0.05%. У деталей с такой точностью в маркировке присутствует значок в виде окружности серебристого цвета. Эти два резистора соединяют последовательно.

Схема используемая для измерения небольших сопротивлений
Схема, используемая для измерений небольших сопротивлений

Далее необходимо предпринять следующие действия:

  1. Резисторы запитывают от аккумулятора на 12 В. Это напряжение доступно, например, при использовании компьютерного блока питания или автомобильной батареи.
  2. На исследуемом резисторе измеряют падение напряжения. Мультиметр при этом имеет точность до 0.1 мВ.
  3. Дальше на основе применения закона Ома проводят вычисления, в результате которых будет получено определенное сопротивление.

Согласно закону Ома в описанной выше схеме U = U1 + U2. При этом U1 — это падение напряжения на эталонном резисторе, а U2 — на том, который требуется измерить. Нам известно, что U = 12 В, тогда U2 = 12 – U1.

Теперь можно написать, что I = U1 / R1 = ( 12 – U2 ) / R1, а также I = U2 / R2.

Приравниваем правые части этих уравнений:

( 12 – U2 ) / R1 = U2 / R2

Из этого выражения определяем, что R2 = R1 * U2 / (12 – U2)

Слева от знака равенства находится сопротивление, которое необходимо получить, а справа — выражение, в котором все величины известны: R1 — эталонное сопротивление, U2 — измеренное падение напряжения. Поэтому можно без труда подсчитать R2.

Точность при применении данного способа является достаточно высокой.

Определение сопротивления изоляции проводов

Чтобы кабель или отдельный провод могли надёжно функционировать, они защищаются изоляцией. Она может быть сделана из поливинилхлорида, бумаги и других материалов. Чтобы убедиться в целостности и надёжности изоляции, требуется проверить сопротивление провода. Это делается в такой последовательности:

  1. Необходимо выбрать режим прозвонки.
  2. Вставить щупы в соответствующие гнезда.
  3. Проверить работоспособность щупов. Для этого их надо соединить друг с другом. Если при этом на дисплее появится ноль (или тысячные доли), это означает, что прибор исправен, а в цепи нет обрыва.
  4. Щупы следует приложить к контактам исследуемого участка провода и замкнуть цепь.
  5. Если провод целый, то будет слышен звуковой сигнал. Если сопротивление существенно превышает выбранный диапазон измерений, на дисплее появится 1. В этом случае следует изменить диапазон.

Полученный результат должен соответствовать нормативам и рабочему диапазону тестера. Если речь идёт о достаточно большом сопротивлении, для проверки кабелей применяются специальные измерительные приборы — мегаомметры.

Результат прозвонки
Результат прозвонки

Сопротивление человека

  • Для расчёта величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм [5] . Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых меняется во времени, в третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.
  • Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека весьма значительно (около 15 кОм). Поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только до 12 В.

Советы по измерению сопротивления

Чтобы получить точное значение сопротивления с помощью мультиметра, необходимо соблюдать правила измерений:

  • Нужно правильно выбрать режим работы устройства. Когда проводятся измерения сопротивления, то нельзя устанавливать мультиметр в положение, предназначенное для определения значений тока или напряжения. Неправильно выбранный рабочий режим может привести к поломке прибора.
  • Рекомендуется в процессе работы использовать перчатки, не проводящие ток. В противном случае полученные результаты измерений могут быть менее точными. В некоторых случаях может возникнуть опасность для работника.
  • При прикосновении щупами контакт должен быть качественным. Чтобы обеспечить хороший контакт, к щупам подсоединяют небольшие зажимы или прикрепляют иглы. Выбор делают в зависимости от особенностей проводимых измерений. При необходимости щупы следует зачистить.
  • Измерение сопротивления проводят только на отключённых от электропитания схемах.
  • Перед проведением измерений следует хотя бы приблизительно определить диапазон ожидаемых значений, чтобы правильно его выставить.
  • Работать нужно только с исправным прибором. Если у него есть механическое повреждение или повреждена изоляция щупов, это может быть опасно.
  • При измерении элементов на плате рекомендуется предварительно выпаять хотя бы один конец. Если так не сделать, то на результат измерения сопротивления могут повлиять электрические характеристики других элементов схемы.

Щупы для мультиметра
Щупы для мультиметра

Заключение

Сопротивление и его единица измерения Ом имеют основополагающее значение. Этот параметр помогает выявить неисправности электронных устройств, проектировать различную аппаратуру. Умея мерить этот параметр и зная, что он означает, мастер сможет выполнить ремонт оборудования любой сложности.

Предыдущая
РазноеЗачем нужны сервисы приема СМС и с чем их едят
Следующая
РазноеИмпульсный и аналоговый блоки питания, принципы работы и основные отличия. Что такое импульсный блок питания (ИБП) и как он работает
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять