Импульсный и аналоговый блоки питания, принципы работы и основные отличия. Что такое импульсный блок питания (ИБП) и как он работает

Простейшие ЗУ для авто.

Устройство импульсного блока питания

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность. Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц. Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Какие бывают виды и где применяются

Разделить импульсники можно по разным признакам. По выходному напряжению они делятся на:

  • однополярные с одним уровнем напряжения;
  • ондополярные с несколькими уровнями напряжения;
  • двухполярные.

Эти типы можно комбинировать как угодно – принципиальных ограничений нет. Можно создать блок питания, например, с несколькими однополярными напряжениями (+5 В, +24 В) и с двуполярным (±12 В), или с двумя двуполярными выходами (±12 В, ±5 В). Все зависит от области применения.

Более интересной является информация о типе стабилизации. Здесь ИИП можно разделить на категории:

  1. Нестабилизированные источники. У них выходное напряжение зависит от нагрузки. Могут быть применены для питания оконечных устройств аудиоаппаратуры (усилители и т.п.).
  2. Стабилизированные источники. У таких устройств от нагрузки могут не зависеть напряжение, ток или и то, и другое. Источники со стабилизированным напряжением используются, например, в качестве БП для компьютеров и серверов, или для заряжания кислотно-свинцовых аккумуляторов. Стабилизированный ток подойдет для зарядных устройств для других типов АКБ.
  3. Регулируемые источники. У них уровень выходного напряжения и тока можно выставлять в определенных пределах в зависимости от потребности. Такие устройства используются в качестве лабораторных источников питания.

Импульсный и аналоговый блоки питания, принципы работы и основные отличия. Что такое импульсный блок питания (ИБП) и как он работает
Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Описать все области использования импульсников невозможно. Они применяются там, где надо получить большой ток от легкого и компактного источника.

Также можно разделить ИИП по схемотехнике:

  • с импульсным трансформатором;
  • с накопительной индуктивностью.

В схемотехнику можно углубляться и дальше и классифицировать БП по другим критериям, но это принципиального значения не имеет.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов
Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Структурная и принципиальная схема основных частей блока

Импульсный блок питания – подборка схем для самостоятельного изготовления
Обобщенная структурная схема импульсного БП.

На входе блока питания устанавливается сетевой фильтр. Принципиально на работу самодельного или промышленного импульсного блока питания он не влияет – все будет функционировать без него. Но отказываться от схемы фильтрации нельзя – из-за крайне нелинейной формы потребляемого тока импульсные источники интенсивно «сыплют» помехами в бытовую сеть 220 вольт. По этой причине работающие от этой же сети устройства на микропроцессорах и микроконтроллерах – от электронных часов до компьютеров – будут работать со сбоями.

Импульсный блок питания – подборка схем для самостоятельного изготовления
Схема сетевого фильтра.

Назначение входного устройства — защита от двух видов помех:

  • синфазной (несимметричной) – возникает между любым проводом и землей (корпусом) БП;
  • дифференциальной (симметричной) – между проводами (полюсами) питания.

Фильтр, как и весь блок питания, на входе защищен предохранителем F (плавким или самовосстанавливающимся). После предохранителя стоит варистор – резистор, сопротивление которого зависит от приложенного напряжения. Пока входное напряжение в норме, сопротивление варистора велико и он не оказывает никакого действия на работу схемы. Если напряжение повышается, сопротивление варистора резко просаживается, что вызывает увеличение тока и сгорание предохранителя.

Будет интересно➡  Что такое внутреннее сопротивление источника питания?

Конденсаторы Cx блокируют дифференциальные помехи на входе и выходе фильтра в диапазоне до 30 МГц. На частоте 50 Гц их сопротивление велико, поэтому влияния на сетевое напряжение они не оказывают. Их емкость может быть выбрана от 10 до 330 нФ. Резистор Rd устанавливается для безопасности – через него разряжаются конденсаторы после отключения питания.

Синфазные помехи подавляет фильтр на Cy и L. Их значения для частоты среза f связаны формулой Томпсона:

f=1/(2*π*√L*C), где:

  • f – частота среза в кГц (берется частота преобразования импульсника);
  • L – индуктивность дросселя, мкГн;
  • С – емкость Cy, мкФ.

Синфазный дроссель наматывается на ферритовом кольце. Обмотки одинаковые, мотаются на противоположных сторонах.
Импульсный блок питания – подборка схем для самостоятельного изготовления
Конструктив синфазного дросселя.

В отличие от выходного фильтра, на расчет элементов фильтра защиты от помех номинальный ток БП не влияет, за исключением провода, которым наматывается дроссель.

После фильтра сетевое напряжение выпрямляется. В большинстве случаев используется стандартный двухполупериодный мостовой выпрямитель.

Входные цепи

Входные цепи предназначены для защиты сети от перегрузки при неисправности БП и от импульсных помех, возникающих при работе устройства. В качестве примера можно рассмотреть фильтр и защиту промышленного компьютерного ИИП.
Описание работы и устройство импульсного блока питания
Входные цепи импульсника MAV-300W-P4.

Плавкий 5-амперный предохранитель перегорает при превышении номинального тока при аварийной ситуации в БП. Для защиты от повышения напряжения предусмотрен варистор V1. В штатном режиме он не влияет на работу устройства. При скачке в сети от открывается, его сопротивление резко увеличивается, ток через варистор возрастает. Это вызывает перегорание предохранителя.

Терморезистор с отрицательным коэффициентом сопротивления THR1 сначала имеет большое сопротивление и ограничивает ток, идущий на зарядку конденсаторов фильтра высоковольтного выпрямителя. Потом термистор прогревается проходящим через него током, его сопротивление падает, но к тому моменту емкости уже будут заряжены. Конденсаторы CX1, C11, C12, CY3 и синфазный дроссель FL1 защищают сеть от синфазных и дифференциальных помех.

Инвертор

Преобразование постоянного напряжения в импульсное происходит с помощью инвертора на полупроводниковых ключах (часто на транзисторах). Открываясь и закрываясь, ключи подают в обмотку импульсы напряжения. Таким методом получается своеобразное переменное напряжение (однополярное), которое может быть трансформировано в напряжение другого уровня обычным способом.

Описание работы и устройство импульсного блока питания
Схемы транзисторных инверторов.

Самая простая схема преобразователя постоянного напряжения в импульсное – однотактная. Для ее реализации нужен минимум элементов. Недостаток такого узла – при росте мощности резко растут габариты и масса трансформатора. Связано это с принципом действия такого преобразователя. Он работает в два цикла – во время первого транзистор открыт, энергия запасается в индуктивности первичной обмотки. Во время второго запасенная энергия отдается в нагрузку. Чем больше мощность, тем больше должна быть индуктивность, тем больше должно быть витков в первичной обмотке (соответственно, увеличивается количество витков во вторичных обмотках).

От этого недостатка свободна двухтактная схема со средней точкой (пушпульная). Первичная обмотка трансформатора разделена на две секции, которые через ключи поочередно подключаются к минусовой шине. На рисунке красной стрелкой показано направление тока для одного цикла, а красной – для другого. Минусом является необходимость иметь удвоенное количество витков в первичке, а также наличие выбросов в момент коммутации. Их амплитуда может достигать двойного значения от напряжения питания, поэтому надо применять транзисторы с соответствующими параметрами. Сфера применения такой схемы – низковольтные преобразователи.

Выбросы отсутствуют, если инвертор выполнен по мостовой схеме. Из четырех транзисторов составлен мост, в диагональ которого включена первичная обмотка трансформатора. Транзисторы открываются попарно:

  • первый цикл – верхний левый и нижний правый;
  • второй цикл – нижний левый и верхний правый.

Обмотка подключается к плюсу питания то одним выводом, то другим. Минусом является применение 4 транзисторов вместо двух.

Компромиссным вариантом считается применение полумостовой схемы. Здесь коммутируется один конец первичной обмотки, а второй подключен к делителю из двух емкостей. В этой схеме также отсутствуют выбросы напряжения, но применено всего два транзистора. Недостаток такого решения – к первичной обмотке прикладывается только половина питающего напряжения. Вторая проблема – при создании мощных источников емкость конденсаторов делителя растет, и их стоимость становится нецелесообразной.

Если ИИП построен по схеме с регулировкой параметров методом широтно-импульсной модуляции (ШИМ), то в большинстве случаев ключи приводятся в действие не напрямую от микросхемы ШИМ, а через промежуточный узел – драйвер. Связано это с повышенными требованиями к прямоугольности управляющих сигналов.

Описание работы и устройство импульсного блока питания
Фрагмент схемы промышленного импульсного источника – полумостовой инвертор на транзисторах Q1, Q2 управляется через промежуточный узел на транзисторах Q8, Q9 и трансформаторе T1.

В схемах всех преобразователей используются как полевые, так и биполярные транзисторы, а также IGBT, сочетающие свойства обоих типов.

Высоковольтный выпрямитель и фильтр

Высоковольтный выпрямитель обычно строится по традиционной мостовой двухполупериодной схеме и особенностей не имеет. Если в преобразователе применяется полумостовая схема, то фильтр выполняется из двух емкостей, включенных последовательно – так формируется средняя точка с напряжением, равным половине питания.

Описание работы и устройство импульсного блока питания
Участок схемы импульсника с высоковольтным выпрямителем D1-D4 и с емкостным делителем напряжения C1-C2.

Иногда параллельно конденсаторам ставят резисторы. Они нужны для разряда емкостей после выключения питания.

Фильтр

Выходное напряжение надо отфильтровать – оно содержит большое количество продуктов преобразования. Так как инвертор работает на достаточно большой частоте, то эффективными становятся фильтры, содержащие не только конденсаторы, но и малогабаритные дроссели относительно небольшой индуктивности.

Импульсный блок питания – подборка схем для самостоятельного изготовления
Г- и П-образные LC-фильтры.

Для расчета элементов фильтра надо задаться коэффициентом пульсаций Кп. Он выбирается из предполагаемой нагрузки:

  • чувствительная аппаратура для радиоприема, предварительные каскады аудиоаппаратуры, микрофонные усилители – Кп=10-5..10-4;
  • усилители звуковой частоты – Кп=10-4..10-3;
  • приемная и звуковоспроизводящая аппаратура среднего и низкого класса – Кп=10-2..10-3.

Для Г-образного фильтра, устанавливаемого после двухполупериодного выпрямителя, действуют соотношения:

  • L*C=25000/(f2+Кп);
  • L/C=1000/R2н.

В этих формулах:

  • L – индуктивность дросселя в мкГн;
  • С – емкость конденсатора в мкФ;
  • f – частота преобразования в Гц;
  • Rн – сопротивление нагрузки в Омах.

Для П-образного фильтра:

  • С1=С2=С;
  • L/C=1176/R2н.

Размерность величин та же, что и для предыдущего фильтра.

Будет интересно➡  Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части. Заземление в частном доме

Выпрямитель

Напряжение вторичной обмотки надо выпрямить. Для уровней до 12 вольт желательно использовать двухполупериодную схему со средней точкой.

Импульсный блок питания – подборка схем для самостоятельного изготовления
Схема выпрямителя со средней точкой и прохождение тока по ней.

Преимущество данной схемы – ток проходит в каждую сторону только через один диод, и падение напряжения на вентилях, в отличие от классической мостовой схемы, в два раза меньше. Это может существенно сократить потребное число витков вторичной обмотки. Этой же цели служит применение диодов Шоттки и сборок из них.

Импульсный блок питания – подборка схем для самостоятельного изготовления
Схема мостового выпрямителя и прохождение тока по ней.

Если выходное напряжение БП выше +12 вольт, то экономия 0,6 вольт становится несущественной, и можно выполнить выпрямитель по стандартной схеме и применить трансформатор без отвода.

В случае, если выход импульсного блока питания должен быть двухполярным, снова становится рациональным выполнение отвода от средней точки. В этом случае экономится сразу 4 диода и радиаторы для них – выигрыш в габаритах может быть существенным.
Импульсный блок питания – подборка схем для самостоятельного изготовления
Двухполярный выпрямитель со средней точкой.

Цепи обратной связи

Цепи обратной связи служат для стабилизации и регулировки выходного напряжения, а также для ограничения тока. Если источник нестабилизированный, у него эти цепи отсутствуют. У устройств со стабилизацией тока или напряжения эти цепи выполняются на постоянных элементах (иногда с возможностью подстройки). У регулируемых источников (лабораторных и т.п.) в обратную связь включены органы управления для оперативной регулировки параметров.

Схемы инверторов

Получившееся выпрямленное напряжение поступает на преобразователь (инвертор). Его выполняют на биполярных или полевых транзисторах, а также на IGBT-элементах, сочетающих свойства полевых и биполярных. В последние годы получили распространение мощные и недорогие полевые транзисторы с изолированным затвором (MOSFET). На таких элементах удобно строить ключевые схемы инверторов. В схемах импульсных блоков питания используются различные варианты включения MOSFET, но в основном применяются двухтактные схемы из-за простоты и возможности наращивания мощности без существенных переделок.

Пуш-пульная схема

Импульсный блок питания – подборка схем для самостоятельного изготовления
Схема пуш-пульного преобразователя.

Пуш-пульный инвертор (push – толкать, pull – тянуть) — пример двухтактного преобразователя. Транзисторные ключи работают на первичную обмотку трансформатора, состоящую из двух полуобмоток I и II. Транзисторы поочередно открываются на заданный промежуток времени. Когда открыт верхний по схеме транзистор, ток течет через полуобмотку I (красная стрелка), когда второй – через полуобмотку II (зеленая). Чтобы избежать ситуации, когда оба ключа открыты (из-за конечной скорости работы транзисторов), схема управления формирует паузу, называемую Dead time.

Импульсный блок питания – подборка схем для самостоятельного изготовления
Управление транзисторами с учетом Dead time.

Такая схема хорошо работает при низком напряжении питания (до +12 вольт). Минусом является наличие выбросов амплитудой, равной удвоенному напряжению питания. Это влечет за собой применение транзисторов, рассчитанных на вдвое большее напряжение.

Мостовая схема

От главного недостатка предыдущей схемы свободна двухтактная мостовая.

Импульсный блок питания – подборка схем для самостоятельного изготовления
Двухтактная мостовая схема инвертора.

Здесь одновременно открывается пара транзисторов T1 и T4, потом Т2 и Т3 (сигнал управления ключами формируется с учетом Dead time). При этом первичная обмотка подключается к источнику питания то одной стороной, то другой. Амплитуда импульсов равна полному напряжению питания, и выбросы напряжения отсутствуют. К минусам относят применение четырех транзисторов вместо двух. Помимо увеличения габаритов БП это ведет к удвоенным потерям напряжения.

Полумостовая схема

На практике часто применяют полумостовую схему инвертора – в определенной мере компромисс между предыдущими двумя схемами.

Импульсный блок питания – подборка схем для самостоятельного изготовления
Полумостовая схема.

В этом случае одна сторона обмотки коммутируется поочередно открывающимися транзисторами Т1 и Т2, а другая подключается к средней точке емкостного делителя С1, С2. Достоинства схемы:

  • в отличие от пушпульной отсутствуют выбросы напряжения;
  • в отличие от мостовой используются только два транзистора.

На другой чаше весов – обмотка трансформатора запитана лишь от половины напряжения питания.

Однотактные схемы

В схемотехнике преобразователей применяются и однотактные схемы – прямоходовые и обратноходовые. Их принципиальное отличие от двухтактных – трансформатор (точнее, его первичная обмотка) служит одновременно накопительной индуктивностью. В обратноходовых схемах энергия накапливается в первичной обмотке во время открытого состояния транзистора, а отдается в нагрузку через вторичную обмотку во время закрытого. В прямоходовых накопление энергии и отдача потребителю происходит одновременно.

Импульсный блок питания – подборка схем для самостоятельного изготовления
Две фазы работы обратногоходового однотактного инвертора.

Корректор коэффициента мощности

Устройство, именуемое корректором коэффициента мощ­ности (рис. 5), собрано на основе специализированной микро­схемы TOP202YA3 (фирма Power Integration) и обеспечивает коэффициент мощности не менее 0,95 при мощности нагрузки 65 Вт. Корректор приближает форму тока, потребляемую нагруз­кой, к синусоидальной.

Схема корректора мощности

Рис. 5. Схема корректора коэффициента мощности на микро­схеме TOP202YA3.

Максимальное напряжение на входе — 265 В. Средняя час­тота преобразователя — 100 кГц. КПД корректора — 0,95.

Импульсный источник питания с микросхемой

Схема источника питания с микросхемой той же фирмы Po­wer Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.

Пре­образователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номина­лах и элементах устройство позволяет подключать нагрузку, по­требляющую 20 Вт при напряжении 24 В. КПД преобразователя приближается к 90%. Частота преобразования — 100 Гц. Устрой­ство защищено от коротких замыканий в нагрузке.

Импульсный блок питания на микросхеме фирмы Power Integration

Рис. 6. Схема импульсного источника питания 24В на микросхеме фирмы Power Integration.

Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в таблице 1.

Таблица 1. Характеристики микросхем серии TOP221Y — TOP227Y.

Тип микросхемыРmax, ВтТок срабатывания защиты, АСопротивление открытого тран­зистора, Ом
TOP221Y70,2531,2
T0P222Y150,515,6
T0P223Y3017,8
T0P224Y451,55,2
T0P225Y6023,9
T0P226Y752,53,1
T0P227Y9032,6

Отличия импульсного блока питания от обычного трансформаторного

Описание работы и устройство импульсного блока питания
Схема трансформаторного стабилизированного источника питания.

Традиционный «трансформаторный» блок питания строится по схеме: трансформатор — выпрямитель с фильтром — стабилизатор выходного напряжения (может отсутствовать). Схема несложна и отработана годами, но у нее есть существенный недостаток – при увеличении мощности опережающими темпами растут габариты и вес.

В первую очередь растут размеры и масса трансформатора. Для повышения тока надо увеличивать сечение обмоток, но главный вклад в массогабаритные характеристики вносит сердечник. Не вдаваясь в физические подробности, можно отметить, что эту проблему можно обойти, увеличив частоту, на которой происходит трансформация. Чем выше частота, тем меньшим сердечником можно обойтись. Не зря в авиации и кораблестроении используются электросети на частоту 400 Гц. Многие элементы получаются гораздо легче и компактнее. Но в быту негде взять повышенную частоту. 50 Гц в розетке – все, что доступно потребителю. Поэтому блоки питания на большие токи строят по другому принципу. В них переменное напряжение сети выпрямляется, а затем из него «нарезаются» импульсы более высокой (до нескольких десятков килогерц) частоты. За счет этого трансформатор получается маленьким и легким без потери мощности. Это главное, чем отличается любой импульсный блок питания от обычного.

Будет интересно➡  Что такое фазное и линейное напряжение?

Еще один источник повышенных размеров и габаритов – стабилизатор. В традиционных БП применяются линейные стабилизаторы. Они требуют повышенного входного напряжения, а разница между входом и выходом, умноженная на ток нагрузки, бесполезно рассеивается. Это ведет к дополнительному увеличению массы трансформатора, который должен обеспечивать необходимый бесполезный запас по мощности, а также требует больших и тяжелых теплоотводящих радиаторов. В ИИП это делается по другому принципу. Напряжение стабилизируется методом изменения ширины импульсов. Это позволяет повысить КПД и не требует отвода излишнего тепла в таком количестве.

В видео-сравнение линейного и импульсного блоков питания.

К недостаткам импульсников можно отнести усложненную схемотехнику и повышенные требования к надежности элементов. Эти минусы сходят на нет с ростом мощности. Считается, что для выходных токов до 2..3 ампер подходят трансформаторные блоки с линейными стабилизаторами, а чем выше нагрузка, тем ярче начинают проявляться преимущества ИИП. При токах от 10 А обычно о трансформаторных БП речь уже не идет.

Среди минусов импульсных источников также надо упомянуть генерацию помех в питающую сеть и «замусоренность» выходного напряжения высокочастотными составляющими.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Существуют ограничения по мощности

Особенность импульсных блоков питания заключена в том, что их нельзя не только перегружать, но и недогружать. В случае того, если потребление тока в цепи упадет ниже критического предела, то схема запуска может просто отказаться работать либо выходное напряжение будет иметь характеристики далекие от рабочего диапазона.

Основные неисправности импульсного блока питания

Внешние проявления неисправности могут быть такими:

  • посторонний шум, запах дыма, горелой изоляции при включении (на холостом ходу или под нагрузкой);
  • импульсный блок питания при включении не запускается – нет индикации включения, отсутствует выходное напряжение (или все напряжения);
  • отсутствует одно из выходных напряжений (если у БП есть несколько каналов);
  • нестабильное выходное напряжение;
  • повышенное или пониженное напряжение на выходе.

Отдельно надо выделить неисправность, когда не включается вентилятор у блока с принудительным охлаждением. Сама по себе проблема на работоспособность не влияет, но в ближайшем будущем это может привести к перегреву и поломке.

Если наблюдается первая по списку проблема, блок питания надо немедленно обесточить и до устранения неисправности в сеть 220 вольт не включать.

Как можно проверить ИБП

Если есть сомнения, можно проверить работу ИБП. Для этого его надо включить под нагрузкой – некоторые источники на холостом ходу просто не запускаются. В качестве эквивалента можно применить автомобильные лампочки, если блок рассчитан на выходное напряжение 12 вольт, или другие лампочки накаливания, соединяя их последовательно и параллельно для создания требуемой нагрузки. Если подходящих ламп нет, можно составить нагрузку из резисторов необходимого сопротивления и потребной мощности.

Как отремонтировать импульсный блок питания
Лампочка в качестве нагрузки блока питания.

Для простой проверки работоспособности ток через лампы должен быть хотя бы 5..10% от номинала ИБП. Если источник с принудительным охлаждением, надо нагрузить его так, чтобы ток составил не менее половины максимально допустимого (а лучше – ближе к верхнему пределу). Это нужно, чтобы заставить сработать реле температуры для проверки включения вентилятора.

Методика ремонта блоков питания

Те, кто занимается восстановлением работоспособности электронной техники, знают, что 90+ процентов ремонта сводится к поиску неисправности. Замена найденного вышедшего из строя элемента в большинстве случаев занимает немного времени и не требует особых навыков.

Второй момент – у импульсников одного типа бывают конструктивные слабые места, ведущие к характерным проблемам, но в целом поиск неисправности – процесс творческий, и пошаговую в буквальном смысле инструкцию дать невозможно. Но привести общую методику поиска вполне реально, хотя надо понимать, что она ничего не стоит без достаточной квалификации и наличия приборов. Как минимум, потребуются мультиметр и осциллограф.

Визуально можно лишь определить вздувшиеся и потекшие оксидные конденсаторы. Даже если при осмотре видны обугленные элементы, их замена может ничего не дать – причиной выгорания могут быть другие комплектующие.

Как отремонтировать импульсный блок питания
Вздувшиеся оксидные конденсаторы обнаруживаются визуальным осмотром.

Предыдущая
РазноеДля чего и в каких случаях измеряют сопротивление изоляции. Измерение сопротивления изоляции мегаомметром
Следующая
РазноеСистемы заземления TN-C, TN-S, TN-C-S, TT, IT со схемами (ПУЭ). Системы заземлений - преимущества и недостатки
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять