Лазерный диод: схема, подключение и питание, характеристики

Несколько фактов о лазерном диоде

Лазерный диод в последнее время получил широкое распространение в современной микроэлектронике. Они относительно дешевы, просты в производстве, имеют минимальное количество управляющих. Все эти факторы стали основой их широкого применения в самых различных сферах. Сам принцип его работы основан на инверсии населенности, другими словами когда преобладают частицы с большим энергетическим уровнем. Основано это на полупроводниковом эффекте перехода p-n при увеличении количества носителей заряда, то есть дырок и электронов, обладающих определенным зарядом.

Лазерный диод имеет форму прямоугольной пластинки, очень тонкая. По своей сути он является оптическим волноводом. Чтобы изготовить компонент, эту пластинку с двух сторон особым образом легируют. Это необходимо чтобы получить с одной стороны область n, p – с другой стороны. В статье изложены все особенности строения лазерного диода, принцип их работы и в каких сферах они используются. Бонусом является подробная научная статья и два ролика, посвященные рассматриваемой теме.

Лазерный диод.
Лазерный диод.

История лазерных диодов

Полупроводниковые или диодные лазеры очень важны для многих применений. В них используются не уровни, а энергетические состояния нелокализованных электронов. В твердых телах энергетические уровни электронов группируются в зоны. При температуре абсолютного нуля в полупроводниках, все имеющиеся уровни заполняют одну зону (валентная зона), а последующие свободные уровни группируются в другой зоне (зона проводимости), которая совершенно не заполнена и отделена от валентной зоны некоторым промежутком энергий, для которых нет состояний. Этот интервал называется запрещенной зоной (энергетической щелью). В этих условиях материал не может проводить ток и является изолятором.

Когда температура увеличивается и если зона проводимости расположена от валентной зоны не слишком высоко, термическое возбуждение достаточно, чтобы некоторые из электронов перескочили в зону проводимости. Поскольку там все уровни пустые, они способны обеспечить электрический ток. Однако из-за того, что их мало, величина тока невелика. Соответственно материал становится проводящим с плохой проводимостью, т.е. полупроводником. Электроны, которые способны поддерживать ток в зоне проводимости, оставляют вакантными состояния в валентной зоне. Эти вакантные состояния, которые называются дырками, ведут себя как положительно заряженные частицы и также участвуют в проводимости. В чистом полупроводнике термическое возбуждение производит электроны в зоне проводимости и дырки в валентной зоне в равных количествах.

Материал по теме: Что такое реле времени

Электроны и дырки, способные поддерживать ток, называются носителями. Если по какой-либо причине в зоне проводимости оказывается больше электронов, чем следует по статистике Максвелла-Больцмана, избыток электронов падает на вакантные энергетические уровни валентной зоны и таким образом возвращается в валентную зону и там исчезает дырка. То же самое происходит, если, наоборот, больше дырок присутствует в валентной зоне, чем допускается данной температурой. Этот процесс называется рекомбинацией двух носителей. Он происходит, давая энергию, соответствующую величине интервала между двумя зонами, которая проявляется либо в виде механических колебаний решетки, либо в виде испускания фотона. Переход называется излучательным, а энергия фотона соответствует разности энергий уровней в валентной зоне и в зоне проводимости, т.е., грубо говоря, равной энергии запрещенной зоны.

Некоторые полупроводники не вполне чистые. Примеси образуют энергетические уровни электронов внутри зон. Если эти дополнительные уровни находятся вблизи дна зоны проводимости, термическое возбуждение заставляет их электроны перепрыгнуть в зону проводимости, где они способны поддерживать электрический ток. Уровни примеси остаются пустыми и, поскольку они фиксированы в материале, не способны поддерживать ток. В этом случае единственными носителями тока являются электроны в зоне проводимости, и полупроводник называется допированным n-типом («n» напоминает, что проводимость обеспечивается отрицательными зарядами).

Будет интересно➡  Что такое эффект Ганна и при чем здесь диоды

Наоборот, если уровни примеси располагаются вблизи верха валентной зоны, термическое возбуждение заставляет электроны из валентной зоны перепрыгнуть на эти примесные уровни, образуя тем самым дырки, которые способны поддерживать ток. Тогда полупроводник называется p-типом («p» — для положительного заряда). Возможно так допировать полупроводник, что получаются области как p-типа, так и n-типа с узкой промежуточной областью между ними. Этот промежуток между различными областями называется p-n-переходом. Если заставить ток протекать через этот переход, делая n область отрицательной и p область положительной, электроны инжектируются в этот переход. На основе этого свойства были изобретены в конце 1940-х гг. транзисторы, вызвавшие революцию в мире электроники.

Лазерные диоды с подключениями.
Лазерные диоды с подключениями.

Принцип работы

Лазерный диод является дальнейшим развитием обычного светоизлучающего диода (или светодиода, или LED). Термин «laser» на самом деле является акронимом, несмотря на то, что он часто пишется строчными буквами. «Laser» означает «Light Amplification by Stimulated Emission of Radiation» (усиление света посредством вынужденного излучения) и относится к другому странному квантовому процессу, при котором характерный свет, излучаемый электронами, спускающимися в материале с высокоуровневых на низкоуровневые энергетические состояния, стимулирует другие электроны делать сходные «прыжки», результатом чего является синхронизированный вывод света из материала. Эта синхронизация распространяется на фазу излучаемого света, так что все световые волны, излучаемые «лазерным» материалом, имеют не только одинаковую частоту (цвет), но и одинаковую фазу, так что они усиливают друг друга и способны распространяться по очень узко ограниченному, недисперсионному лучу. Именно поэтому лазерный свет остается настолько заметно сфокусированным на больших расстояниях: каждая световая волна находится очень близко от другой.

Белый свет состоит из множества волн с разными длинами. Свет монохромного светодиода с одной длиной волны. Фазово-когерентный лазерный свет. Лампы производят «белый» (из смешанных частот, или из смешанных цветов) свет, как на рисунке выше. Обычные светодиоды производят монохроматический свет: одна частота (цвет), но разные фазы, что приводит к аналогичной дисперсии на рисунке выше.

Лазерные светодиоды производят когерентный свет: свет и монохроматический (одноцветный) и монофазный (однофазный), что приводит к точному ограничению луча, как на рисунке выше. В современно мире лазерный свет находит широкое применение: от геодезии, где прямой и недисперсионный световой луч очень полезен для точного прицеливания измерительных маркеров, до считывания и записи оптических дисков, где только узкий сфокусированный лазерный луч способен нацеливаться на микроскопические «ямы» на поверхности диска, содержащие двоичные единицы и нули цифровой информации.

Доступные длины волн и мощностей лазерных диодов.
Таблица доступных длин волн и мощностей лазерных диодов.

Для некоторых лазерных светодиодов требуются специальные мощные «импульсные» схемы для подачи больших величин напряжения и тока во время коротких вспышек. Другие лазерные светодиоды при меньшей мощности могут работать непрерывно. В непрерывном лазере лазерное воздействие происходит только в пределах определенного диапазона токов через диод, что требует какой-то схемы регулирования тока. С возрастом лазерных светодиодов потребляемая ими мощность может меняться (для обеспечения такой же выходной мощности может потребоваться больший ток), но следует помнить, что маломощные светодиоды, как и обычные светодиоды, являются довольно долговечными устройствами с типовым сроком службы в десятки тысяч часов.

Три одинаковых лазерных диода с разных сторон.
Три одинаковых лазерных диода с разных сторон.

Как делают мощные лазерные светильники на диодах

Несколько десятилетий яркий лазерный свет украшал концерты, спортивные мероприятия и прочие шоу. Между тем за картинкой зрелищ всегда оставались технологические ограничения. Лазерный луч обладал способностями освещать только одну точку за момент времени и никогда в белом свете. Более того, световые узоры, созданные лазерным лучом, изобиловали постоянно меняющимся и несколько жутким феноменом интерференционной картинки. Однако технологии сделали своё дело. Недавние достижения в области полупроводниковых лазеров открыли более широкий спектр применения. Усовершенствованный лазерный диод теперь доступен и для точной подсветки фасадов зданий и для автомобильных фар дальнего света.

Будет интересно➡  Что такое SMD светодиоды

Суть и практика света

Лазерные диоды следует рассматривать «близкими родственниками» светоизлучающих диодов (LED – Light Emitting Diodes). Конструкция светодиодов содержит диоды или микросхемы, выполненные на основе двух терминальных полупроводниковых элементов. Этими полупроводниками осуществляется преобразование потока электрической энергии в луч света и цвета определенной длины волны. Гамма цвета, в свою очередь, зависит от применяемого сочетания терминальных полупроводников.

Выпускаются белые светодиоды, где от чипа синего луч направляется на фосфорно-химическую основу. В результате поглощения синего света, прибор начинает излучать желтый свет. Излучение жёлтого люминофора и синего светодиода объединяют и таким образом получают свет, воспринимаемый глазами человека как белый.

Возможности устройства

Лазерные диоды оснащены двумя зеркалами на противоположных концах полупроводника. Одно из зеркал имеет частичную прозрачность, подобно двухстороннему зеркалу. При низких уровнях мощности, лазерный диод работает аналогично тому, как работает обычный светодиод с очень малой эффективностью отдачи. Однако, как только электрическая мощность достигает порога плотности, равного примерно 4 кВт/см2, полупроводник излучает достаточно света для части длин волн, что отражаются между зеркалами. Эти условия позволяют лазерному диоду излучать значительно больше света, чем это делает обычный светодиод.

Блок лазерного диода.
Блок лазерного диода.

Кроме того, отражённый между зеркалами свет, проходит сквозь полупрозрачное зеркало, благодаря чему формируется узкий луч синего. Этот луч далее может быть направлен на люминофор для последующей генерации желтого света. Стоит отметить интересную деталь: обычные синие светодиоды имеют высокую светоотдачу, регенерируя до 70% электрической мощности, проходящей через приборы при плотности потока 3 Вт/см2. Это значительно более эффективно, чем в случае с лазерными диодами синего излучения, мощность конверсии которых не превышает 30%, когда плотность электроэнергии составляет не более 10 кВт/см2.

Но светодиоды способны достигать высокой эффективности при низких токовых уровнях. Поэтому эффективная отдача требует значительной массы дорогих полупроводников. Усиление тока, пропускаемого через светодиоды, повышает яркость излучения. Но увеличение тока резко снижает эффективность светодиодов. Это явление известно как «спад». А вот эффективность лазерных диодов с увеличением тока не изменяется. Таким образом, при плотности электроэнергии около 5 кВт/см2, светодиоды становятся менее эффективными по сравнению с диодными лазерами. Эта разница производительности увеличивается пропорционально с уровнем мощности.

Инфракрасный лазерный диод.
Инфракрасный лазерный диод.

Эффективность устройства

Исходящий лазерный луч формирует конус излучения всего лишь в 1º — 2º по сравнению с конусом светового излучения светодиода в 90º. Форма излучения двух разных типов диодов. Слева обычные светодиоды, справа модификация с лазерным излучением. Разница в характеристике формы луча очевидна. Длина волны лазерного излучения падает в пределах 1 нм по сравнению с несколькими десятками нанометров для светодиодного освещения. Эти различия указывают на особую ценность лазеров для отдельных случаев применения, где светодиоды значительно уступают. Внутри диода лазер можно сфокусировать на крошечной точке люминофора для создания узкого интенсивного луча яркостью, в 20 раз превышающей яркость светодиода.

Новые технологии позволяют генерировать до 500 люменов светового потока из фокусного пятна, размерами всего в несколько сотен микрометров. С помощью лазеров и оптики размером 25 мм, новые технологии позволяют выводить световой луч с конусом около 1º. Эти достижения можно считать революционными. Реально открывается доступ к производству фонарей и автомобильных фар дальнего света, луч которых способен пробивать расстояние до 1 км! Синий лазер, излучаемый с поверхности от 4 до 30 мкм, даёт столько же оптической мощности, сколько дают светодиоды, размещённые на площади 800 мкм.

Чтобы вписаться в максимально допустимый диапазон дальнего света, утверждённый нормами ЕС, компания «BMW» разработала подходящую автомобильную фару. Автомобильная фара сочетает в конструкции широкоугольный светодиодный люминофор с узко-угольной дальнобойной лазерной подсветкой. Световая масса такой подсветки пробивает расстояние до 600 метров. Готовый 7-миллиметровый квадратный модуль содержит:

  • синий лазерный диод,
  • квадратный люминофор (1х1 мм),
  • отражатель синего луча.
Будет интересно➡  Маркировка SMD транзисторов

Отражатель синего лазера служит для временного транспорта перед смешением с жёлтым люминофором.

Технические возможности приспособления лазера

Светильники с лазерным источником, по своей сути должны иметь различные конструктивные вариации с учётом дизайна тех же светодиодных светильников. Лазерный диод и люминофор необходимо отделять достаточным пространством для лазерного луча, чтобы сфокусировать и защитить люминофор от перегрева. В другом варианте люминофор может располагаться рядом или покрываться непосредственно светодиодами. В любом варианте специальное компьютерное программное обеспечение поможет дизайнерам модельной оптики разрабатывать уникальные лазерные светильники. Таким образом, есть все предпосылки, чтобы использовать желтые люминофоры, используемые в светодиодах, чтобы создать белый свет. Однако синий лазерный луч необходимо рассеять или отразить материалом, подобным матовому стеклу. Это необходимо для правильного смешения с излучением люминофора.

Материал в тему: Что такое кондесатор

Применение лазерных светильников в архитектуре

Высокая интенсивность лазеров удачно работает в архитектурной прожекторной подсветке, где требуются узкие лучи света. Лазеры с малой оптикой обеспечивают подсвечивание точных областей при помощи широкоугольного, сверхкороткого потока. Лазерное возбуждение люминофоров может создавать очень высокий контраст между светлыми и тёмными областями. При этом градиенты света более чем в 10 раз резче, чем в случае с обычными светодиодными источниками. Так, лазерный источник света способен равномерно освещать экстерьер пятиэтажного здания с использованием одного светильника, размещённого в области первого этажа.

Номинальная цветовая температура продуктов «SoraaLaser», предназначенных для наружного лазерного освещения, составляет 5700K, а цветопередача 70-80К. Лазерный свет доступно сконцентрировать и направить внутрь оптических волокон или волноводов, что является несоизмеримо сложной задачей в случае с источниками на светодиодах. Инженерами компании «SoraaLaser» разработана система переноса синего лазерного излучения на люминофоры посредством оптоволоконной связи. Подобное решение позволяет размещать источники света в местах удалённых, защищённых от теплового и электромагнитного воздействия.

Согласно коммерческим планам «SoraaLaser», компания ожидает запуска первой волны коммерческих, статических осветительных приборов к началу 2019 года. Уникальные разработки обещают улучшение цветопередачи, энергетическую эффективность, высокую производительность для конкретных проектов. Мощные управляемые прожекторы готовятся полностью вытеснить уже устаревшие светодиодные приборы.

Лазеры.
Лазеры.

Заключение

Более подробно о лазерных диодах можно прочитать в статье  Лазерные диоды и как они устроены. Если у вас остались вопросы, можно задать их в комментариях на нашем сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.fis.wikireading.ru

www.scsiexplorer.com.ua

www.radioprog.ru.

www.zetsila.ru

Предыдущая
ПолупроводникиЧто такое фотодиод
Следующая
ПолупроводникиЧто такое светодиод
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять