RGB – английская аббревиатура, расшифровывающаяся как «красный, зеленый, синий». Соответственно, rgb светодиод имеет внутри три самостоятельных источника света. В зависимости от своего строения. Такие светодиоды могут иметь один общий анод либо катод. Весь эффект заключается в особенностях нашего зрения. Если рядом друг с другом расположить диоды, дающие красное и синие свечение, на дальности в несколько метров свет от них сольется и получится фиолетовый.
Если в этот спектр добавить еще и зеленый, в данном случае свет станет просто белым. В статья изложены все особенности строения, устройства rgb светодиода, а также в каких сферах они используются. В качестве бонуса в статье есть несколько видеоматериалов и одна интересная научная статья по этому вопросу.
Устройство и сферы применения
Конструктивно RGB–светодиоды представляют собой три светодиодных кристалла с одной оптической линзой, расположенные в одном корпусе. Управление цветом происходит с помощью подачи электрических сигналов на выводы каждого светодиодного кристалла, а сочетание излучений всех трех светодиодов позволяет регулировать итоговый цвет. Для примера, ниже представлен самый популярный RGB–светодиод SMD 5050.
Светодиод RGB – это полноцветный светодиод, смешивая три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность, получится свечение белого цвета.
Сферы применения RGB светодиодов напрямую связаны с развитием рынка рекламы и развлекательных мероприятий. Также готовые RGB–светильники и ленты применяются в области светового оформления архитектурных и дизайнерских решений — ночная подсветка зданий или фонтанов, интерьерный свет, индикаторный системы автомобилей и т.д.
Разнообразие сфер применения многоцветных светодиодных источников света определяет основные виды внешнего оформления RGB–светодиодов: изделия небольшой мощности выпускаются в стандартных круглых корпусах со сферической линзой и выводами под обычную пайку; маломощные RGB–светодиоды в SMD-корпусах поверхностного монтажа широко применяются в светодиодных лентах или полноцветных светодиодных экранах большой площади; в корпусах типа Emitter выпускают мощные RGB–источники света с независимым управление каждым светодиодным кристаллом; сверх яркие светодиоды в корпусах.
Для упрощения систем управления светом в корпуса некоторых серий многоцветных LED–источников света вмонтированы управляющие микросхемы. Схемы расположения выводов (распиновка) Несколько стандартных схем управления определяют структуру внешних выводов RGB–светодиодов и их соединение внутри корпуса. Существует три основных схемы распиновки, которые соблюдаются на большинстве выпускаемых изделий:
- В схеме с общим катодом для управления используется три независимых вывода анода, а катодные выводы LED-кристаллов соединены между собой;
- Распиновка с общим анодом управляется отрицательными импульсами на катодные выводы, а вместе соединены уже анодные электроды светодиодных кристаллов;
- Независимая схема соединения имеет шесть выводов по числу LED кристаллов, соединений внутри корпуса не производится.
Единого стандарта на распиновку не существует, конкретный тип расположения внешних выводов применяют в зависимости от поставленных задач. При отсутствии документов на светодиодное изделие тип внешних выводов легко определить с помощью мультиметра. В режиме прозвонки светодиод будет светиться (мощные светодиоды очень слабо), а мультиметр издавать звук соединения, если красный щуп мультиметра подсоединен к аноду светодиодного кристалла, а черный к его катоду. В случае обратного подключения никаких видимых и слышимых эффектов просто не будет.
Простейший способ подключения и управления режимами работы RGB–светодиодов реализуется с помощью стандартных микроконтроллеров Arduino. Общий вывод подключается к единой шине микроконтроллера, а управляющие сигналы подаются на выводы LED–кристаллов через ограничительные резисторы.Управление режимами свечения светодиодных кристаллов происходит с помощью широтной-импульсной модуляции, где скважность импульсов определяет силу света. Программирование ШИМ–модулятора определяет итоговый цвет всего прибора или циклические режимы работы каждого цвета.
Материал по теме: Что такое реле времени
Как устроены 3 цветные led диоды
Конструктивно трехцветный светодиод представляет собой 3 цветных светодиода, смонтированных в общем корпусе, а если быть более точным, 3 кристалла, интегрированных на одной матрице. На рис.1 представлена микрофотография интегрального rgb светодиода. Цветные квадраты на фото – это кристаллы основных цветов. Для отображения всей палитры оттенков вполне достаточно три цвета, используя RGB синтез (Red — красный, Green — зеленый, Blue — синий). RGB палитра используется не только в графических редакторах, но и в сайтостроении. Смешивая цвета в разной пропорции можно получить практически любой цвет. Преимущества RGB светодиодов в простоте конструкции, небольших габаритах и высоком КПД светоотдачи.
[stextbox id=’info’]RGB светодиоды объединяют три кристалла разных цветов в одном корпусе. RGB LED имеет 4 вывода — один общий (анод или катод имеет самый длинный вывод) и три цветовых вывода. К каждому цветовому выходу следует подключать резистор. Кроме того, модуль RGB LED Arduino может сразу монтироваться на плате и иметь встроенные резисторы — этот вариант более удобный для занятий в кружке робототехники.[/stextbox]
Виды
Для адаптации к разным вариантам схемы управления, ргб диоды производятся в нескольких модификациях:
- Исполнение с общим катодом
- Исполнение с общим анодом
- Без общего анода или катода, с шестью выводами
В первом случае светодиод управляется сигналами положительной полярности, поступающими на аноды, во втором – отрицательными импульсами, подаваемыми на катоды. Третья модификация исполнения допускает любые варианты коммутации и выпускается обычно в виде SMD компонента.
Подключение
В качестве примера приведем схему подключения ргб диодов к универсальному блоку автоматики Arduino, созданному на базе микроконтроллера ATMEGA. На рис. 2 показана схема подключения rgb led с общим катодом. Выводы RGB в обоих случаях подключаются к цифровым выходам (9, 10,12). Общий катод на Рис.2 соединен с минусом (GND), общий анод на Рис.3 – с плюсом питания (5V). Arduino — простой контроллер для начинающих роботехников, позволяющий создавать на своей базы различные устройства, от обычной цветомузыки на светодиодах до интеллектуальных роботов.
Управление
Включение светодиода происходит при прохождении прямого тока, когда анод подключен к плюсу, катод к минусу. Многоцветный спектр излучения можно получить, изменяя интенсивность свечения каналов (RGB). Результирующий оттенок определяется соотношением яркостей отдельных цветов. Если все 3 цвета одинаковы по интенсивности свечения, результирующий цвет получается белым.
Для тех, кто забыл. Скважностью называется отношение длительности периода следования импульсов к длительности импульса. Чем ниже скважность импульсов канала, тем ярче свечение соответствующего led диода. Программа управления скважностью импульсов цветовых каналов зашита в микросхеме контроллера. Такое изменение скважности импульсов, осуществляемое в целях управления процессом, называется ШИМ (широтно – импульсной модуляцией). Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ. На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета.
Катоды одного цвета всех диодов объединены, и через резисторы R4.1, R4.2, R4.3 соединяются с эмиттером соответствующего транзистора. Таким образом, все светодиоды красного цвета подключены к транзистору VT1.1, зеленые светодиоды – к VT1.2, синие – к VT1.3. При перемещении движков потенциометров R1.1, R1.2, R1.3 изменяется ток базы соответствующего транзистора. Величина тока базы определяет степень открытия перехода «эмиттер – коллектор», и, в конечном счете, яркость свечения соответствующего цвета. Перед подключением нужно правильно определить полярность светодиода, иначе он не будет светиться.
[stextbox id=’info’]Применение цифровых программируемых контроллеров предоставляет практически безграничные возможности управления цветом. В тех же случаях, когда не требуется создание цветовых динамических образов, может быть применен аналоговый способ управления. Это могут быть наружные или интерьерные светильники для статической подсветки с выбором цвета. Кстати. Применение такого регулирования в системах подсветки панелей приборов транспортных средств позволяет водителю выбирать любой оттенок и яркость.[/stextbox]
RGBW светодиоды
Для того чтобы получить чисто белый цвет, используя разноцветный rgb светодиод, необходима точная балансировка яркости свечения по кристаллу каждого цвета. На практике это бывает затруднительно. Поэтому, для воспроизведения белого цвета и увеличения разнообразия цветовых эффектов, rgb диод стали дополнять четвертым кристаллом белого свечения. Чаще всего, RGBW светодиоды используются в светодиодных лентах RGBW SMD. Для питания таких светодиодных лент созданы специальные RGBW контроллеры, как правило, управляемые пультами дистанционного управления на инфракрасных лучах.
Смешение цветов
Чем RGB-светодиод, лучше трех обычных? Всё дело в свойстве нашего зрения смешивать свет от разных источников, размещенных близко друг к другу. Например, если мы поставим рядом синий и красный светодиоды, то на расстоянии несколько метров их свечение сольется, и глаз увидит одну фиолетовую точку. А если добавим еще и зеленый, то точка покажется нам белой. Именно так работают мониторы компьютеров, телевизоры и уличные экраны.
Матрица телевизора состоит из отдельно стоящих точек разных цветов. Если взять лупу и посмотреть через нее на включенный монитор, то эти точки можно легко увидеть. А вот на уличном экране точки размещаются не очень плотно, так что их можно различить невооруженным глазом. Но с расстояния несколько десятков метров эти точки неразличимы.
Получается, что чем плотнее друг к другу стоят разноцветные точки, тем меньшее расстояние требуется глазу чтобы смешивать эти цвета. Отсюда вывод: в отличие от трех отдельностоящих светодиодов, смешение цветов RGB-светодиода заметно уже на расстоянии 30-70 см. Кстати, еще лучше себя показывает RGB-светодиод с матовой линзой.
Как изменяется цвет свечения
Регулировка цвета осуществляется путем регулировки яркости излучения каждым из кристаллов. Мы уже рассматривали способ регулировки яркости светодиодов с помощью ШИМ-контроллера. RGB-контроллер для ленты работает по такому же принципу, в нём стоит микропроцессор, который управляет минусовым выводом источника питания – подключает и отключает его от цепи соответствующего цвета. Обычно в комплекте с контроллером идёт пульт дистанционного управления. Контроллеры бывают разной мощности, от этого зависит их размер, начиная от такого миниатюрного.
Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.
Так как сечение дорожек на ленте не позволяет подключать последовательно с ней следующий отрезок ленты, если длина первого превышает 5м, нужно подключать второй отрезок проводами напрямую от РГБ-контроллера. Но можно выйти из положения, и не тянуть допоkнительных 4 провода на 5 метров от контроллера и использовать RGB-усилитель. Для его работы нужно протянуть всего 2 провода (плюс и минус 12В) или запитать еще один блок питания от ближайшего источника 220В, а также 4 «информационных» провода от предыдущего отрезка (R, G и B) они нужны для получения команд от контроллера, чтобы вся конструкция светилась одинаково. А к усилителю уже подключают следующий отрезок, т.е. он использует сигнал с предыдущего куска ленты. То есть вы можете запитать ленту от усилителя, который будет расположен непосредственно возле неё, тем самым сэкономив деньги и время на прокладку проводов от первичного RGB-контроллера.
Заключение
Более подробно о светодиодах и способе их управления рассказано в статье Как управлять светодиодом. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.electrik.info
www.robotclass.ru
www.ledjournal.info
www.ledno.ru
www.xn--18-6kcdusowgbt1a4b.xn--p1ai
Предыдущая