Что такое эффект Ганна и при чем здесь диоды

Что такое эффект Ганна и при чем здесь диоды

Диод Ганна – особая разновидность полупроводниковых диодов, отличающийся от своих аналогов наличием отрицательного сопротивления. Оно возникает в однородном полупроводнике если к нему прикладывается значительной силы электрическое поле. Он зависит от толщины, которая может быть единицей до нескольких микрон. Заключается этот слой между двумя контактами – анод и катод.

Основным материалом изготовления таких диодов служит вещество арсенид галия или фосфид индия. Дифференциальное сопротивление с отрицательным значением возможен благодаря эффекту междолинного перехода электродов в зоне проводимости. В статье разобраны все вопросы строения, проивзодства, использования диодов Ганна, описан сам этот эффект и в чем он заключается.

Диоды Ганна.
Диоды Ганна.

Что такое эффект Ганна

При комнатной температуре Т = 300 К согласно (3.16) n2/n1 = 7×10-5, т.е. практически все электроны зоны проводимости находятся в нижней долине. Положение меняется при прикладывании к диоду напряжения Uо. С увеличением U0 возрастает напряженность электрического поля Е =U0/L (L – длина активной области диода) и энергия электронов, что эквивалентно возрастанию температуры Т. В результате возрастает число электронов проводимости, переходящих из нижней долины в верхнюю.

Средняя дрейфовая скорость электронов при любом значении Е определяется как средняя арифметическая скорость электронов нижней (V1) и верхней (V2) длин. График зависимости скорости электронов от напряженности электрического поля V(Е) для n-GaAs приведен на рис.3.17. При Е < Епор почти все электроны зоны проводимости находятся в нижней долине n = n1 + n2 = n1, n=0 . Согласно (3.17) V = µE, т.е. зависимость V(Е) имеет линейный характер.

Диод Ганна крепление.
Диод Ганна крепление.

С увеличнием напряжености поля Е все большее число электронов переходит в верхнюю долину (n2 – возрастает, n1 – уменьшается), при Е > Епор этот процесс происходит настолько резко, что происходит уменьшение средней дрейфовой скорости электронов V. Напряженность поля, соответствующая максимальной скорости Vмакс, называют пороговой (или критической). При Е > Eпор, когда n2=n и n1=0, зависимость V(Е) снова должна стать линейной: V = µ2E. В действительности при сильных полях Е > Eпор взаимодействие электронов с кристаллической решеткой приводит к насыщению скорости электронов, поэтому V = Vнас = const. Крутизну падающего участка зависимости V(Е) характеризуют дифференциальной подвижностью

µ3 = dV/dE < 0, (3.18)

Плотность электронного тока в однородном полупроводнике пропорциональна средней дрейфовой скорости электронов:

j = GE = e(µ1n1 + µ2n2)E = e(n1 + n2)V, (3.19)

где G- удельная проводимость полупроводника.

При n0 = n1 + n2 = const во всем объеме полупроводника уменьшение скорости электронов с увеличением напряженности поля (dV/dЕ < 0) равносильно уменьшению плотности тока (dj/dE < 0) и следовательно является причиной возникновения в полупроводнике состояния отрицательной дифференциальной проводимости (G < 0).

Характеристики диодов Ганна
Таблица основных характеристик диодов Ганна.

[stextbox id=’info’]Полупроводник, обладающий отрицательной дифференциальной проводимостью имеет следующее свойство: если в объеме кристалла полупроводника возникает произвольная флуктуация концентрации носителей заряда ∆n, избыточная по отношению равновесной концентрации и no, то в той области кристалла, где возникла эта флукциация, начнется нарастание пространственного заряда в пространстве и во времени , что приведет к неустойчивости распределения электрического поля в кристалле при постоянном приложенном напряжении U > Uпор = Епор×L.[/stextbox]

Для более подробного рассмотрения этого свойства обратимся к рис.3.18, который иллюстрирует развитие неустойчивости электрического поля в однородном полупроводнике, обладающем отрицательной дифференциальной проводимостью. Предположим, что при приложении к ДГ напряжения Uo из катода в однородный полупроводник инжектируются электроны, в результате чего в пределах небольшого участка х возникает неоднородность, в виде слоя накопления, в которой количество электронов n > no (рис. 3.18,а). Распределение поля Е(х) связано с распределением заряда n(x) – no уравнением Пуассона:

, где ε – диэлектрическая проницаемость.

Там, где n = n ∂E/∂x = 0 и поэтому Е = const. В области же, где n > no, ∂E/∂x > 0, т.е. напряженность поля Е(х) возрастает.

Поскольку напряжение U=  , а в области неоднородности ∂E/∂x > 0 напряженности поля Е1 и Е2 окажутся разными: Е1 < Eср = U/L < E2. Если Еср соответствует падающему участку (рис.3.18,в), скорость электронов V1(E1) > V2(E2), заряд движущегося к аноду слоя будет пополняться за счет электронов, поступающих со стороны катода.Увеличение же заряда приведет к увеличению ∂E/∂x в слое и как следствие, к увеличению разности полей Е2 – Е1 (рис.3.18,б). Рост Е2 и уменьшение Е1 будут продолжаться до тех пор, пока растущий слой объемного заряда не исчезнет, достигнув анодного контакта.

Будет интересно➡  Принцип работы диода и сфера его применения
Полупроводниковый диод.
Полупроводниковый диод.

Затем процесс накопления, перемещения растущего заряда и его рассасывания будет периодически повторяться, причем период равен времени движения заряда через кристалл Т = L/Vнас. При этом будут наблюдаться периодические колебания тока во внешней цепи диода Ганна. В зависимости от длины активной области диода L, концентрации носителей n возможны и другие виды неустойчивости тока в образце GaAs при постоянном приложенном напряжении Uo. Явление возникновения колебаний тока в однородном образце n-GaAs часто называется эффектом Ганна.

Материал по теме: Что такое реле контроля.

Диоды Ганна: устройство, схема, обозначение, принцип работы, применение

Эти радиокомпоненты диодами называются только из-за конструктивного сходства с полупроводниковыми электрическими вентилями. Они так же оснащаются двумя выводами, то есть катодом и анодом, но в конструкции отсутствует p-n-переход, и выпрямляющими свойствами диоды Ганна не обладают. Их функция состоит в другом. Элементы используются для генерации сверхвысокочастотных электрических колебаний (СВЧ).

Имя собственное эти радиокомпоненты получили по фамилии первооткрывателя квантового эффекта, лежащего в основе функциональности этих генераторов СВЧ. Британский физик Джон Ганн в начале 60-х годов XX века обнаружил, что кристалл арсенида галлия начинает испускать электромагнитные волны частотой более 10 ГГц при воздействии на него электрического поля с напряжённостью, превышающей некое пороговое значение. Этот процесс вошёл в научную терминологию под названием эффекта Ганна.

Схема диода Ганна.
Схема диода Ганна.

Физическая основа

Справедливости ради следует заметить, что Джон Ганн, открывший свой знаменитый эффект, не объяснил его физические принципы. Он лишь адаптировал его результаты для практической электроники, разработав конструкцию своего знаменитого диода. Физические принципы генерации СВЧ-колебаний арсенидом галлия объяснил с точки зрения квантовой механики другой учёный – американец Г. Крёмер.

[stextbox id=’info’]Он установил, что при воздействии на кристалл арсенида галлия электрического поля высокой напряжённости в его структуре возникают так называемые домены сильного поля – своеобразные сгустки электронов, движущиеся от катода к аноду. Как и любое движение носителей заряда, это перемещение домена является током в самом обычном смысле этого слова. При достижении доменом анода ток прекращается.[/stextbox]

Эффект Ганна состоит в том, что сразу же после исчезновения первого домена в области катода образуется следующий. Как только исчезнет он, на смену ему придёт третий, потом четвёртый и так далее – до тех пор, пока не будет снято приложенное электрическое поле. Таким образом, на аноде диода Ганна возникает последовательность импульсов. Из-за того, что длительность переходных процессов составляет крайне малые величины – порядка наносекунд – частота этого импульсного сигнала измеряется в десятках гигагерц. Такие радиосигналы используются в передатчиках, приёмниках и прочем радиотехническом оборудовании, работающем в режиме СВЧ.

Единственное «слабое место» диодов Ганна заключается в их низковольтном характере эксплуатации. Напряжение, вырабатываемое этими радиокомпонентами, колеблется на уровне единиц микровольт и даже дробных долей. В связи с этим при использовании диодов Ганна в принципиальную схему вводятся усилители СВЧ-сигнала. Это усложняет конечное устройство, но на эти жертвы конструкторы всё равно идут, если к технике предъявляются повышенные требования в отношении стабильности частоты. По данному параметру диоды с эффектом Ганна – вне конкуренции. В этом с ними не могут спорить стандартные волноводные СВЧ-генераторы.

Принцип работы диода Ганна.
Принцип работы диода Ганна.

Генератор на диоде Ганна

Типовой генератор на диоде Ганна состоит из самого диода, подключённого непосредственно к резонатору, и источника питания, который выполняется регулируемым. Благодаря регулировке питающего напряжения генератор может вырабатывать сигнал в одном из следующих режимов:

  1. доменный;
  2. пролётный;
  3. гашение домена;
  4. задержка домена.

Перечисленные режимы различаются вольтамперными характеристиками, что проявляется в генерации импульсов разной формы. Это используется для выработки радиосигналов с заданными характеристиками и применяется в радиоаппаратуре специального назначения.

Будет интересно➡  Виды и устройство оптронов (оптопар)
Расчет диода Ганна.
Расчет диода Ганна.

Производство диодов Ганна

Первым материалом для производства диодов Ганна стал упомянутый выше арсенид галлия. Позднее было обнаружено, что схожими свойствами обладает фосфид индия. В первые годы в производстве элементов использовались единые кристаллы, но с развитием молекулярно-атомных технологий диоды Ганна стали изготавливать на основе кристаллических сборок. В них центральная область выполнена из чистого однородного полупроводника, а анодная и катодная зоны, расположенные по сторонам, изготавливаются из материала с глубоким легированием. Такая структура обеспечивает более высокое входное сопротивление, вследствие чего создаются условия для стабильного образования доменов электрического поля.

Конструкция и принцип действия

Диод Ганна традиционно представляет собой слой арсенида галлия с омическими контактами с обеих сторон. Активная часть диода Ганна обычно имеет длину от l до 100 мкм с концентраций легирующих донорных примесей 1014−1016 см−3. В этом материале, в зоне проводимости, имеются два минимума энергии, которым соответствуют два состояния электронов — «тяжёлые» и «лёгкие». В связи с этим с ростом напряжённости электрического поля средняя дрейфовая скорость электронов увеличивается до достижения полем некоторого критического значения, а затем уменьшается, стремясь к скорости насыщения (рис. 1)

Таким образом, если к диоду приложено напряжение, превышающее произведение критической напряжённости поля на толщину слоя арсенида галлия в диоде, равномерное распределение напряжённости по толщине слоя становится неустойчиво. Тогда при возникновении даже в тонкой области небольшого увеличения напряжённости поля электроны, расположенные ближе к аноду, «отступят» от этой области к нему, а электроны, расположенные у катода, будут пытаться «догнать» получившийся движущийся к аноду двойной слой зарядов. При движении напряжённость поля в этом слое будет непрерывно возрастать, а вне его — снижаться, пока не достигнет равновесного значения. Такой движущийся двойной слой зарядов с высокой напряжённостью электрического поля внутри получил название домена сильного поля, а напряжение, при котором он возникает — порогового.

[stextbox id=’info’]В момент зарождения домена ток в диоде максимален. По мере формирования домена ток уменьшается и достигает своего минимума по окончании формирования. Достигая анода, домен разрушается, и ток снова возрастает. Но едва он достигнет максимума, у катода формируется новый домен. Частота, с которой этот процесс повторяется, обратно пропорциональна толщине слоя полупроводника и называется пролетной частотой.[/stextbox]

На ВАХ полупроводникового прибора наличие падающего участка является недостаточным условием для возникновения в нём СВЧ колебаний, но необходимым. Возникновение колебаний означает, что в кристалле полупроводника развивается неустойчивость. Характер этой неустойчивости зависит от параметров полупроводника (профиля легирования кристалла, его размеров, концентрации носителей и т. д.).

При помещении диода Ганна в резонатор возможны другие режимы генерации, при которых частота колебаний может быть сделана как ниже, так и выше пролетной частоты. Эффективность такого генератора относительно высока, но максимальная мощность не превышает 200—300 мВт. первый из них заключается в выборе приемлемой технологии нанесения таких контактов непосредственно на высокоомный кристалл арсенида галлия.

при втором подходе кристалл прибора выполняется многослойным. В диодах с такой структурой на слой высокоомного низколегированного арсенида галлия наращивают с обеих сторон эпитаксиальные слои низкоомного высоколегированного арсенида галлия с проводимостью n-типа. Эти высоколегированные слои служат переходными подложками от рабочей части кристалла к металлическим электродам.

Принцип работы диода Ганна.
Принцип работы диода Ганна.

Применение

Диод Ганна может быть использован для создания генератора в 10 ГГц и выше (вплоть до ТГц) диапазона частот. Резонатор, который может быть выполнен в виде волновода, применяют для управления частотой. Частота генераторов на диоде Ганна определяется в основном резонансной частотой колебательной системы с учетом ёмкостной проводимости диода и может перестраиваться в относительно широких пределах механическими (с помощью изменения геометрических размеров резонатора) и электрическими методами. Однако, срок службы генераторов Ганна относительно мал, что связано с одновременным воздействием на кристалл полупроводника таких факторов, как сильное электрическое поле и перегрев полупроводникового кристалла прибора выделяющейся в нём мощностью.

Диоды Ганна, работающие в различных режимах, используются в диапазоне частот 1—100 ГГц. В непрерывном режиме генерации генераторы на диодах Ганна имеют КПД около 2—4 % и обеспечивают выходную мощность от единиц мВт до единиц Вт. Но, при использовании прибора в импульсном режиме КПД увеличивается в 2—3 раза. Специальные широкополосные резонансные системы позволяют добавить в мощность полезного выходного сигнала высшие гармоники и служат для увеличения КПД. Такой режим работы генератора называется релаксационным.

Будет интересно➡  Как расшифровать цветовую маркировку транзисторов?

Существуют несколько разных режимов использования генераторов на диоде Ганна в зависимости от питающего напряжения, температуры, характера нагрузки: доменный режим, гибридный режим, режим ограниченного накопления объемного заряда и режим отрицательной проводимости. Наиболее часто используемым режимом является доменный режим, при котором в течение большей части периода колебаний характерен режим существования домена. Доменный режим может быть реализован в трёх различных видах: пролётный, с задержкой образования доменов и с гашением доменов. Переход между этими видами происходит при изменении сопротивления нагрузки.

Для диодов Ганна был так же предложен и осуществлен режим ограничения и накопления объёмного заряда. Этот режим имеет место при больших амплитудах напряжения на диоде и на частотах, в несколько раз больших пролетной частоты, и при средних постоянных напряжениях на диоде, которые в несколько раз превышают пороговое значение. Однако, существуют определённые требования для реализации этого режима: полупроводниковый материал диода должен быть с очень однородным профилем легирования. При этом однородное распределение электрического поля и концентрации электронов по длине образца обеспечивается за счет большой скорости изменения напряжения на диоде.

Материал по теме: Что такое реле контроля.

Помимо арсенида галлия (GaAs) и фосфида индия (InP, используется на частотах до 170 ГГц) при изготовлении диодов используется эпитаксиальное наращивание, для изготовления диодов Ганна также применяется нитрид галлия (GaN). В диодах, изготовленных из этого материала была достигнута наиболее высокая частота колебаний — 3 ТГц. Диод Ганна имеет низкий уровень амплитудного шума и низкое рабочее напряжение питания (от единиц до десятков В). При использовании диоды монтируются в резонансных камерах, выполненных на поверхности микросхем с диэлектрическими подложками в комбинации с ёмкостными и индуктивными компонентами, либо используются в виде комбинации внешних резонаторов и микросхем.

Эффект Ганна

Эффект Ганна был открыт Джоном Ганном в 1960-х годах. После его экспериментов на основе GaAs (Арсенид галлия), он обратил внимание на помехи, возникшие в результате этих опытов. Далее он использовал это для генерации электрических колебаний в диапазоне сверхвысоких частот в устойчивом электрическом поле, величиной больше чем пороговое значение. Этот эффект Ганна можно определить как генерация СВЧ (частоты порядка нескольких ГГц) возникающая всякий раз, когда напряжение, прикладываемое к полупроводниковому прибору превышает его критическое пороговое значение.

Эффект Ганна.
Эффект Ганна.

СВЧ генератор на диоде Ганна

Диод Ганна используются для построения генераторов микроволн с частотами в диапазоне от 10 ГГц до ТГц

Это устройство, имеющее отрицательное дифференциальное сопротивление (NDR -Negative Differential Resistance) – также называемого как прибор переноса электронов — является колебательным контуром, состоящий из диода Ганна и подаваемого на него постоянного напряжения смещения (в области отрицательного сопротивления).

Благодаря этому, суммарное дифференциальное сопротивление цепи становится равным нулю, так как отрицательное сопротивление диода сокращается при положительном сопротивлении цепи, что приводит к возникновению колебаний.

Генератор СВЧ.
Генератор СВЧ.

Таким образом, можно утверждать, что диод Ганна является типом полупроводниковым диодом в полупроводниковой структуре не имеющее p-n переходом и используется для генерации и преобразования колебаний в диапазоне СВЧ. В изучении данной темы видно, что тип полупроводниковых диодов, диода Ганна является действенным, актуальным и работающем в своей структуре.

Заключение

В данной статье описаны все особенности работы этого типа диодов, сам принцип эффекта Ганна. Более подробно об этом можно узнать, прочитав статью Что такое генератор Ганна.В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.lektsii.com

www.chem21.info

www.scienceforum.ru

www.eandc.ru

Предыдущая
ПолупроводникиДиод 1n4007: характеристики, маркировка и datasheets
Следующая
ПолупроводникиЧто такое варикап?
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Добавить комментарий

4 × четыре =

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять