Интегральные схемы(микросхемы): что это такое, история изобретения, разновидности

Что такое интегральная микросхема

Интегральная схема – это изделие из микроэлементов с высокой миниатюризацией. Эти элементы преобразуют и обрабатывают сигналы. Сама схема имеет высокую плотность самих элементов. Такие элементы называются компонентами и выполняют ту или иную задачу. Эти схемы могут быть разной сложности и типов – от самых простых до сложнейших.

Используются ИС в создании компьютеров, различной вычислительной техники и другом оборудовании, в том числе промышленном и бытовом. Более подробно о строении, использовании, а также развитии интегральных схем будет рассказано в данной статье. В качестве информационного дополнения, в материале содержатся два подробных видеоролика и один скачиваемые файл о строении ИС.

Что такое интегральная схема
Что такое интегральная схема

Интегральные микросхемы

По научному определению, интегральные микросхемы – это отдельные высокотехнологичные устройства (с огромным количеством электронных компонентов, заключенных в маленьком корпусе), которые выполняют какую-то функцию или действие. Этих функций может быть или одна или несколько. Вот список некоторых основных функций, которые выполняют интегральные микросхемы:

  • Преобразование сигнала (например, из аналогового в цифровой и обратно).
  • Обработка сигнала (например, усиление и очистка звука)
  • Действия вычитания, сложения, умножения и деления сигнала (логические микросхемы)

Интегральные микросхемы представляют собой изделие, выполненное в герметизированном (металлическом, пластмассовом, керамическом, металлокерамическом и так лале) корпусе. Микросхемы бывают различного исполнения (прямоугольные, треугольные, круглые) с разным количеством выводов: от трех (например, на стабилизаторе LM7805, до нескольких сотен на процессорах).

Интересно почитать! Что такое варистор и где его применяют.

Интегральные микросхемы (и аппаратура на них) обладают неоспоримыми преимуществами:

  • Высокой технологичностью и надежностью. Ведь все микросхемы производят на специализированных заводах и фабриках с современной технологией производства. На линиях (полностью или частично) автоматизированных. При производстве микросхемы (особенно в юго-восточных странах) применяют и живую рабочую силу, так как это дешевле, чем покупать дорогостоящие линии. Интегральные компоненты позволяют снизить на два-три порядка затраты труда на производство, монтаж и сборку различной аппаратуры. При конструировании и создании такой аппаратуры уменьшается количество разных паяных соединений, которые зачастую являются причиной отказа аппаратуры. Микросхемы являются более надежными, чем дискретные элементы, так как ошибки при монтаже уменьшаются на 3-4 порядка. Легче и намного быстрее запаять интегральные компоненты (например, один логический элемент с 16 выводами), чем паять более 20 дискретных элементов (которые выполняют ту же функцию) с 60 выводами. Только микросхемы обеспечивают надежность систем управления в различных системах управления, в компьютерах, в околоземном пространстве на космических станциях и так далее.
  • Интегральные компоненты (и аппаратура на них) малогабаритны и имеют маленький вес.
  • Микросхемы намного сокращают процесс разработки нового изделия (аппарата), так как можно использовать готовые, уже опробованные, миниатюрные блоки и узлы. И поэтому внедрение нового изделия в производство резко сокращается.
  • Многие интегральные элементы выпускаются массово (например, микросхемы в домашних звонках, в игрушках, в клавиатурах и мышках компьютеров и т. п.). Это намного снижает себестоимость микросхемы и всего изделия в целом.
  • Интегральные элементы сокращают число комплектующих создаваемого изделия, уменьшают количество проводимых операций, что (в конечном счете) ведет к упрощению организации современного производства.
Будет интересно➡  Как выбрать флюс для пайки микросхем

Микросхемы разделяют на два вида: 1 – полупроводниковые интегральные схемы; 2 – гибридные интегральные схемы.

Полупроводниковые интегральные элементы представляют собой кристалл, в глубине которого выполняют все элементы схемы. Изоляция различных элементов осуществляют с помощью (так называемых) «p-n» переходов.

Гибридные интегральные схемы выполняются по «пленочной» технологии и представляют пластину (подложку) из диэлектрического материала. На нее нанесены (в виде пленок) плоские компоненты (резисторы, дроссели, конденсаторы и т. д.) и соединения. Причем сопротивление резисторов может быть 105 Ом, емкость конденсаторов 103 пФ, а дроссели иметь индуктивность около 10 мкГн – не более.

Транзисторы, диоды, магнитные элементы, конденсаторы более 103 пФ и электролитические выполняют с помощью навесного монтажа. Гибридные интегральные схемы имеют более высокую точность параметров (на один или два порядка выше), чем полупроводниковые аналоги. Количество элементов внутри каждого класса микросхем может достигать несколько тысяч.

Интегральная схема SMD
Интегральная схема SMD

Степень интеграции

  • В зависимости от степени интеграции применяются следующие названия интегральных схем:
  • малая интегральная схема (МИС) — до 100 элементов в кристалле,
  • средняя интегральная схема (СИС) — до 1000 элементов в кристалле,
  • большая интегральная схема (БИС) — до 10000 элементов в кристалле,
  • сверхбольшая интегральная схема (СБИС) — более 10 тысяч элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) — до 1 миллиарда элементов в кристалле и гигабольшая интегральная схема (ГБИС) — более 1 миллиарда элементов в кристалле, но в настоящее время название УБИС и ГБИС практически не используется (например, последние версии процессоров Itanium, 9300 Tukwila, содержат два миллиарда транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС.

Элемент интегральной схемы

Часть интегральной схемы, реализующая функцию какого-либо электрорадиоэлемента (резистора, диода, транзистора и т. д.), причем эта часть выполнена нераздельно от других частей и не может быть выделена как самостоятельное изделие с точки зрения требований к испытаниям, приемке, поставке и эксплуатации. Компонент интегральной схемы в отличие от элемента может быть выделен как самостоятельное изделие с указанной выше точки зрения.

По конструктивно-технологическим признакам интегральные схемы обычно разделяют на:

  • полупроводниковые;
  • гибридные;
  • пленочные.

В полупроводниковой схеме все элементы и межэлементные соединения выполнены в объеме или на поверхности полупроводника. В таких схемах нет компонентов. Это наиболее распространенная разновидность интегральных схем.

Интегральную схему называют гибридной, если она содержит компоненты и (или) отдельные кристаллы полупроводника. В пленочных интегральных схемах отдельные элементы и межэлементные соединения выполняются на поверхности диэлектрика (обычно используется керамика). При этом применяются различные технологии нанесения пленок из соответствующих материалов. По функциональным признакам интегральные схемы подразделяют на аналоговые (операционные усилители, источники вторичного электропитания и др.) и цифровые (логические элементы, триггеры и т. п.).

Краткая историческая справка

Первые опыты по созданию полупроводниковых интегральных схем были осуществлены в 1953 г., а промышленное производство интегральных схем началось в 1959 г. В 1966 г. был начат выпуск интегральных схем средней степени интеграции (число элементов в одном кристалле до 1000). В 1969 г. были созданы интегральные схемы большей степени интеграции (большие интегральные схемы, БИС), содержащие до 10000 элементов в одном кристалле.

В 1971 г. были разработаны микропроцессоры, а в 1975 г. — интегральные схемы сверхбольшой степени интеграции (сверхбольшие интегральные схемы, СБИС), содержащие более 10000 элементов в одном кристалле. Полезно отметить, что предельная частота биполярных транзисторов в полупроводниковых интегральных схемах достигает 15 ГГц и более.

К 2000 г. ожидается появление интегральных схем, содержащих до 100 млн МОП транзисторов в одном кристалле (речь идет о цифровых схемах). Система обозначений. Условное обозначение интегральных микросхем включает в себя основные классификационные признаки.

  • Первый элемент — цифра, соответствующая конструктивно-технологической группе. Цифрами 1, 5, 6 и 7 в первом элементе обозначаются полупроводниковые интегральные микросхемы. Гибридным микросхемам присвоены цифры 2, 4 и 8. Пленочные, вакуумные и керамические интегральные микросхемы обозначаются цифрой 3.
  • Второй элемент, определяющий порядковый номер разработки серии, состоит из двух (от 00 до 99) или трех (от 000 до 999) цифр.
  • Третий элемент, обозначающий подгруппу и вид микросхемы, состоит из двух букв.
  • Четвертый элемент, обозначающий порядковый номер разработки микросхемы данной серии, состоит из одной или нескольких цифр.
Будет интересно➡  Что такое элементная база и где она применяется

К этим основным элементам обозначений микросхем могут добавляться и другие классификационные признаки.

Строение интегральной схемы
Строение интегральной схемы

Дополнительная буква в начале четырехэлементного обозначения указывает на особенность конструктивного исполнения:

  • Р — пластмассовый корпус типа ДИП;
  • А — пластмассовый планарный корпус;
  • Е — металлополимерный корпус типа ДИП;
  • С — стеклокерамический корпус типа ДИП;
  • И — стеклокерамический планарный корпус;
  • Н — керамический «безвыводной» корпус.

В начале обозначения для микросхем, используемых в условиях широкого применения, приводится буква К.

Серии бескорпусных полупроводниковых микросхем начинаются с цифры 7, а бескорпусные аналоги корпусных микросхем обозначаются буквой Б перед указанием серии.

Через дефис после обозначения указывается цифра, характеризующая модификацию конструктивного исполнения:

  • 1 — с гибкими выводами;
  • 2 — с ленточными (паучковыми) выводами, в том числе на полиамидном носителе;
  • 3 — с жесткими выводами;
  • 4 — на общей пластине (неразделенные);
  • 5 — разделенные без потери ориентировки (наклеенные на пленку);
  • 6 — с контактными площадками без выводов.

Как создаются интегральные схемы?

Как изготовить чип памяти или процессор компьютера? Процесс производства начинается с химического элемента — кремния, который химически обрабатывается (легируется) для придания различных электрических свойств.

Современное исполнение интегральной схемы (одна из многочисленных форм), установленной на электронной плате устройства. Это далеко не самый продвинутый вариант, а лишь один из многих

Традиционно для нужд электроники используются материалы двух категорий:

  1. Проводники.
  2. Изоляторы.
Но технически всё сложнее, особенно когда дело касается определенных элементов середины таблицы Менделеева (группы 14 и 15), в частности, кремния и германия. Что примечательно — материалы изоляторы способны переходить в разряд проводников, если к этим материалам добавить некоторое количество примесей. Процесс, известный как легирование.

Принцип легирования химических элементов

Если добавить некоторое количество сурьмы кремнию, структура этого химического элемента насыщается большей массой электронов, чем обычно. Обеспечивается проводимость электричества. Кремний, «легированный» подобным образом, приобретает характеристику N-типа. В другом случае, когда вместо сурьмы добавляется бор, масса электронов кремния уменьшается, оставляя своеобразные «дыры», которые функционируют подобно «отрицательно заряженным электронам».

Благодаря «дырам» положительный электрический ток пропускается в противоположном направлении. Такая разновидность кремния характеризуется P-типом. Расположение областей кремния N-типа и P-типа рядом одна с другой, способствует созданию соединения, где отмечается поведение электронов, характерное для электронных компонентов на основе полупроводников:

  • диодов,
  • транзисторов,
  • запоминающих устройств и других.
Увеличенное фото интегральных схемУвеличенное фото интегральных схем
Увеличенное фото интегральных схем

Структурная интегральная схема внутри чипа

Итак, процесс создания интегральной схемы начинается от монокристалла кремния, напоминающего по форме длинную сплошную трубу, «нарезанную» тонкими дисками — пластинами. Такие пластины размечаются на множество одинаковых квадратных или прямоугольных областей, каждая из которых представляет один кремниевый чип (микрочип). Пример внутренней структуры интегральной схемы, демонстрирующий возможности такой уникальной технологии интеграции полноценных электронных схемотехнических решений.

Будет интересно➡  Что такое элементная база и где она применяется

Затем на каждом таком чипе создаются тысячи, миллионы или даже миллиарды компонентов путём легирования различных участков поверхности — превращения в кремний N-типа или P-типа. Легирование осуществляется различными способами. Один из вариантов — распыление, когда ионами легирующего материала «бомбардируют» кремниевую пластину.

Другой вариант — осаждение из паровой фазы, включающий введение легирующего материала газовой фазой с последующей конденсацией. В результате такого ввода примесные атомы образуют тонкую пленку на поверхности кремниевой пластины. Самым точным вариантом осаждения считается молекулярно-лучевая эпитаксия.

Что такое интегральная микросхема

Конечно, создание интегральных микросхем, когда упаковываются сотни, миллионы или миллиарды компонентов в кремниевый чип размером с ноготь, видится сложнейшим процессом. Можно представить, какой хаос принесёт даже небольшая крупинка в условиях работы в микроскопическом (наноскопическом) масштабе. Вот почему полупроводники производятся в лабораторных условиях безупречно чистых. Воздух лабораторных помещений тщательно фильтруется, а рабочие обязательно проходят защитные шлюзы и облачаются в защитную одежду.

Интересно почитать: что такое клистроны.

Кто создал интегральную схему?

Разработка интегральной схемы приписывается двум физикам — Джеку Килби и Роберту Нойсу, как совместное изобретение. Однако фактически Килби и Нойс вынашивали идею интегральной схемы независимо друг от друга. Между учёными даже существовала своего рода конкуренция за права на изобретение.

Джек Килби трудился в «Texas Instruments», когда учёному удалось реализовать идею монолитного принципа размещения различных частей электронной схемы на кремниевом чипе. Учёный вручную создал первую в мире интегральную микросхему (1958 год), использовав чип на основе германия. Компания «Texas Instruments» спустя год подала заявку на патент.

Тем временем представитель другой компании «Fairchild Semiconductor» — Роберт Нойс, проводил эксперименты с миниатюрными цепями своего устройства. Благодаря серии фотографических и химических методов (планарный процесс), учёный всего лишь на год позже Килби создал практичную интегральную схему. Методика получения также была оформлена заявкой на патент.

Микросхемы на плате
Микросхемы на плате

Заключение

Рейтинг автора
Автор статьи
Лагутин Виталий Сергеевич
Инженер по специальности "Программное обеспечение вычислительной техники и автоматизированных систем", МИФИ, 2005–2010 гг.
Написано статей
74

Более подробно о том, что такое интегральная схема , рассказано в статье Основы микроэлектроники. Если у вас остались вопросы, можно задать их в комментариях на сайте. А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.elektronika-muk.ru

www.tadviser.ru

www.pue8.ru

www.zetsila.ru

Следующая
СхемыЧто такое элементная база и где она применяется
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять