Для чего вообще нужно заземление?
Главная роль заземления – это безопасность. Построение эффективной системы защиты от поражения электрическим током невозможно без системы заземления. Даже само по себе заземление металлического корпуса уменьшает напряжение прикосновения при нарушении изоляции внутри оборудования. А для большей надежности применяется устройство защитного отключения (т.н. УЗО), которое отключает электроприборы при нарушении изоляции и возникновении опасного напряжения на их корпусах. А эффективность работы УЗО во многом зависит от качества системы заземления.
TN-C, зануление, заземление — основные определения
Зануление — это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтральной точкой генератора или трансформатора в сетях трехфазного тока; с глухозаземленным выводом источника однофазного тока; с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
Чтобы понять, что к чему соединяется при занулении, рассмотрим в качестве примера две системы заземления TN-C и TN-C-S (сети постоянного тока опустим):
Система заземления TN-C | Система заземления TN-C-S |
![]() | |
1 — соединение открытых проводящих частей электроустановок с глухозаземленной нейтральной точкой генератора или трансформатора в сетях трехфазного тока. | 2 — соединение открытых проводящих частей электроустановок с глухозаземленным выводом источника однофазного тока. То есть, разделив с одновременным заземлением PEN проводник на нулевой рабочий N и защитный РЕ, вы трансформируете TN-C в более безопасную и надежную систему TN-C-S. Убрав же перемычку между PE и N (разделение PEN не происходит) вы получите систему TT. |
В системе TN сопротивление заземлителя повторного заземления PE проводника на вводе в частный дом не нормируется (но лучше его сделать достаточно низким), сопротивление заземлителя повторного заземления PEN проводника ВЛ не более 30 Ом — и это обязанность оператора распределительной электрической сети. Сопротивление заземлителя TT для отработки УЗО 500 — 1500 Ом.
Заземление — это преднамеренное соединение частей электроустановок и заземляющего устройства (конструкции из металлических полос и штырей, снижающие уровень напряжения до безопасного для человека значения). И важно понимать принципиальное отличие заземления от зануления.
TN-C — эта система заземления, при которой к потребителю от трансформатора с глухо заземленной нейтралью приходит три фазы и PEN проводник. Последний объединяет в себе рабочий нулевой проводник и защитный проводник.
В современном жилищном строительстве система TN-C запрещена (ПУЭ 7.1.13). Она встречается лишь в домах старой постройки. И если вы живете в таком доме, нужно понимать, что PEN (в данном случае — нулевой) проводник является только рабочим. Он не может применяться одновременно и для защиты путем соединения с корпусами электроприборов. В противном случае при обрыве комбинированного нулевого проводника на корпусах электроприборов появится опасное для жизни напряжение.
Система TN-C может применяться только в трехфазных сетях, и только на заводах, в различных производственных зданиях (там находятся бригады дежурных электриков, которые планово проводят осмотр и техническое обслуживание электрооборудования), а также в многоэтажных жилых зданиях, но только до ввода в квартиру. В жилых и общественных зданиях может применяться до ближайшей реконструкции. Если в жилом здании проводится ремонт электросетей, то электромонтажники должны перевести сеть на систему TN-S или TN-C-S.
Виды систем искусственного заземления
Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» – комбинированный и раздельный.
- T — заземление.
- N — подключение к нейтрали.
- I — изолирование.
- C — объединение функций, соединение функционального и защитного нулевых проводов.
- S — раздельное использование во всей сети функционального и защитного нулевых проводов.
В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.
Условные обозначения
Для лучшего понимания материала, разберем принятые условные обозначения:
- L1, L2, L3 — проводник, на который подключена фаза источника питания. В однофазных системах, обозначается буквой L.
- N — рабочий нуль источника питания (нулевой проводник).
- PE — защитный нуль: он же заземляющий проводник, соединенный с заземлителем.
- PEN — проводник, совмещающий в себе рабочий и защитный нули.
Особенности
При типе заземления системы TN-C-S (рис. 1 и 2) заземлена одна из частей источника питания, находящихся под напряжением, обычно – нейтраль трансформатора. Открытые проводящие части электроустановки здания имеют электрическое соединение с заземлённой частью источника питания, находящейся под напряжением. Для обеспечения этого соединения в низковольтной распределительной электрической сети обычно применяют PEN-проводники, а в электроустановке здания используют защитные проводники PE. В системе TN-C-S возможно также применение PEN-проводников в головной (по току электроэнергии) части электроустановки здания. При этом в электрических цепях остальной части электроустановки здания используют защитные проводники.
В системе TN-C-S также, как в системе TN-C в распределительной электрической сети применяют PEN-проводники, а в электроустановке здания так же, как в системе TN-S используют защитные проводники.
При типе заземления системы TN-C-S PEN-проводник всегда разделяют на защитный и нейтральный проводники в какой-то точке электроустановки здания. Это разделение может быть произведено на вводе в электроустановку здания – на вводном зажиме или на защитной шине вводно-распределительного устройства (рис. 1). Так следует делать в электроустановках жилых и общественных зданий, торговых предприятий, медицинских учреждений.
Рис. 1. Система TN-C-S трехфазная четырехпроводная. PEN-проводник разделен на вводе электроустановки здания (на основе рисунка 2.13 из книги [1] автора Харечко Ю.В.)
PEN-проводник может быть разделён также на вводном зажиме или на защитной шине другого распределительного устройства, которое соединено с ВРУ посредством распределительной электрической цепи, имеющей PEN-проводник в составе своих проводников (рис. 2).
Рис. 2. Система TN-C-S трехфазная четырехпроводная. PEN-проводник разделен для части электроустановки здания (на основе рисунка 2.14 из книги [1] автора Харечко Ю.В.)
На рисунках 1 и 2 обозначено:
- заземляющее устройство источника питания;
- заземляющее устройство электроустановки здания;
- открытые проводящие части;
- защитный контакт штепсельной розетки;
- ПС — трансформаторная подстанция;
- КЛ — кабельная линия электропередачи;
- ВЛ — воздушная линия электропередачи.
В первом случае (см. рисунок 1) во всей электроустановке здания применяются два проводника — защитный и нейтральный. Во втором случае (см. рисунок 2) в головной (по току электроэнергии) части электроустановки здания используют PEN-проводник, а после точки его разделения применяют защитный и нейтральный проводники. Открытые проводящие части электрооборудования класса I присоединяют соответственно к защитным проводникам во всей электроустановке здания (см. рисунок 1) или в головной части электроустановки здания их присоединяют к PEN-проводникам, а в остальной её части — к защитным проводникам (см. рисунок 2).
При типе заземления системы TN-C-S теоретически возможно разделение PEN-проводника на защитный и нейтральный проводники в любой точке распределительной электрической сети. Однако более надёжно производить разделение PEN-проводника в электроустановке здания, например, на вводных зажимах ВРУ (ВУ) или на его защитной шине.
Если трансформаторная подстанция встроена в здание, то электроустановку здания целесообразно выполнить с типом заземления системы TN-S, поскольку система распределения электроэнергии не будет иметь линии электропередачи.
Причины широкого распространения типа заземления системы TN-C-S в электроустановках жилых зданий.
Тип заземления системы TN-C-S получил широкое распространение в электроустановках жилых зданий, что обусловлено рядом причин:
- Во-первых, для реализации системы TN-C-S возможно использование существующих низковольтных распределительных электрических сетей без проведения их реконструкции.
- Во-вторых, систему TN-C-S можно рассматривать как логическое развитие системы TN-C. Поэтому электроустановки здания, соответствующие типу заземления системы TN-C-S, можно рассматривать как один из вариантов «модернизации» низковольтных электроустановок, получивших повсеместное распространение на территории нашей страны. Проектировщикам, электромонтажникам и персоналу, обслуживающему электроустановки зданий, сравнительно легко понять логическую трансформацию системы TN-C в систему TN-C-S, а также основные требования, которыми следует руководствоваться при выполнении защитных проводников в электроустановках зданий, имеющих этот тип заземления системы.
- В-третьих, в электрических цепях электроустановок зданий, соответствующих типу заземления системы TN-C-S, которые защищены устройствами дифференциального тока (УДТ), достаточно легко выявить ошибки, допущенные при соединении защитных и нейтральных проводников электропроводок. УДТ будут без какой-либо причины отключать защищаемые ими электрические цепи, сигнализируя о следующих ошибках, допущенных при выполнении монтажа проводников электропроводок:
- — присоединении нейтральных проводников к открытым проводящим частям электрооборудования класса I;
- — присоединении защитных проводников к зажимам электрооборудования, предназначенным для подключения нейтральных проводников;
- — электрическом соединении между собой защитных проводников и нейтральных проводников.
- В-четвёртых, при типах заземления системы TN ток замыкания на землю, протекающий в аварийной электрической цепи с фазного проводника на открытую проводящую часть и защитный проводник, может быть равным току однофазного короткого замыкания. Поэтому в составе такой меры защиты от поражения электрическим током, как автоматическое отключение питания, возможно использование устройств защиты от сверхтока — автоматических выключателей и плавких предохранителей. Однако в некоторых случаях нельзя обеспечить нормируемое время отключения с помощью устройств защиты от сверхтока. Тогда автоматическое отключение питания следует производить с помощью УДТ.
При применении типа заземления системы TN-C-S в электроустановках зданий можно обеспечить более высокий уровень электрической безопасности, чем при использовании типа заземления системы TN-C. Больший уровень электробезопасности, прежде всего, достигается вследствие использования в электроустановках зданий отдельных защитных проводников, по которым в нормальных условиях протекают токи утечки. Их значения существенно меньшие значений токов нагрузки, которые обычно протекают по PEN-проводникам. Незначительные электрические токи оказывают меньшее негативное воздействие на электрические контакты в цепях защитных проводников. Поэтому вероятность потери непрерывности электрической цепи у защитного проводника существенно меньше, чем у PEN-проводника.
При необходимости повысить уровень электробезопасности электроустановку здания следует выполнить с типом заземления системы TN-S. Это потребует строительства новой или реконструкции существующей низковольтной линии электропередачи.
В настоящее время систему TN-C-S повсеместно применяют на территории нашей страны. Для реализации системы TN-C-S используют существующие и новые низковольтные распределительные электрические сети, воздушные и кабельные линии электропередачи которых имеют три фазных проводника и PEN-проводник. На основе этих сетей можно также реализовать системы TN-C и TT.
Как рассчитать заземление
Сопротивление заземления сильно зависит от грунта, в котором оно находится. Причем, забитый в землю заземлитель, зачастую находится одновременно в разных слоях грунта, которые обладают различными удельными сопротивлениями, что усложняет расчет и при этом получаются довольно приблизительные результаты. Тем не менее, такие расчеты существуют, и они обязательны для большинства промышленных объектов. В частном секторе обычно делается некая минимальная конструкция, измеряется сопротивление, а потом она усиливается по необходимости (заземлитель загоняется глубже, либо добавляются новые заземляющие электроды). Ниже приводится формула для расчета одиночного вертикального заземлителя в однородном грунте:
R=(ρ/2πL)(ln(2L/d)+0.5ln((4T+L)/(4T-L)))
ρэкв – удельное сопротивление грунта, Ом*м
L – длина стержня в метрах
d – диаметр стержня в милиметрах
T – расстояние от поверхности земли до середины стержня, м
Удельное сопротивление грунта
Грунт | Удельное сопротивление грунта, Ом·м |
Торф | 20 |
Почва (чернозем и др.) | 50 |
Глина | 60 |
Супесь | 150 |
Песок при грунтовых водах до 5 м | 500 |
Песок при грунтовых водах глубже 5 м | 1000 |
Обозначения и перевод названий систем заземления
Существуют TN, TT и IT системы заземления. Система TN, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Первая буква говорит о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.
Типы систем заземления
Буквы эти взялись из французского, и означают: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также из английского: «Combined» и «Separated» – комбинированный и раздельный.
- T — провод подключен к земле .
- N — подключение к нейтрали.
- I — изолирование.
- C — объединение функций, соединение рабочего и защитного нулевых проводов.
- S — раздельное использование во всей сети рабочего и защитного нулевых проводов.
Также в схемах систем заземления используются следующие обозначения:
- L – Line, Линия, на которой действует фазное напряжение по отношению к нулевому проводу.
- N – Neutral, рабочий ноль, по которому протекает рабочий ток, равный току в проводе L (для однофазных систем).
- PE – Protect Earth, защитная земля, провод защитного заземления.
- PEN – совмещенный рабочий и защитный нулевой проводник.
Недостатки
«Классическую» систему TN-C можно реализовать только в тех низковольтных электроустановках специального назначения, которые имеют небольшое число электроприёмников класса I, подключенных к электрическим цепям, выполненным медными проводниками сечением 10 мм2 и более или алюминиевыми проводниками сечение 16 мм2 и более. Поскольку доля таких низковольтных электроустановок в общем их числе ничтожно мала, а подобных электроустановок зданий практически не существует, тип заземления системы TN-C можно рассматривать в качестве «теоретического» типа заземления системы, как правило, применяемого для разъяснения 4 «практических» типов заземления системы TN-S, TN-C-S, TT и IT.
Обеспечение надлежащего уровня электрической безопасности в электроустановках зданий в большей степени зависит от надёжного функционирования защитных проводников, а именно от гарантированного обеспечения непрерывности их электрических цепей. Непрерывность электрической цепи защитного проводника может сколько угодно долго поддерживаться при протекании по нему в нормальных условиях малого электрического тока, длительное воздействие которого на соединительные контакты не приводит к ухудшению их качества. По PEN-проводнику постоянно протекают значительные рабочие токи, которые, воздействуя на соединительные контакты, могут привести к ухудшению их качества и даже потере электрической непрерывности цепи PEN-проводника.
При применении типа заземления системы TN-C в электроустановках зданий нельзя обеспечить такой же уровень электрической безопасности, как при использовании типов заземления системы TN-C-S и TN-S. Больший уровень электробезопасности в системах TN-C-S и TN-S, прежде всего, достигается вследствие использования в электроустановках зданий отдельных защитных проводников, по которым в нормальных условиях протекают токи утечки. Их значения существенно меньшие значений токов нагрузки, которые обычно протекают по PEN-проводникам. Незначительные электрические токи оказывают меньшее негативное воздействие на электрические контакты в цепях защитных проводников. Поэтому вероятность потери непрерывности электрической цепи у защитного проводника существенно меньше, чем у PEN-проводника.
Поэтому защитные проводники, обладающие более высокой степенью надёжности, чем PEN-проводники, следует применять в электроустановках зданий, которые «эксплуатируют» обычные лица. По этой причине вполне обоснованным является запрет, наложенный пунктом 312.2.1 ГОСТ 30331.1-2013 на применение типа заземления системы TN-C для электроустановок жилых и общественных зданий, торговых предприятий и медицинских учреждений, в электрических цепях которых требованиями национального стандарта запрещено использовать PEN-проводники.
Поэтому, логично сказать, что низковольтные электроустановки, соответствующие типу заземления системы TN-C, должны обслуживать обученные и квалифицированные лица, которые прошли специальную подготовку, позволяющую им осознавать риски и избегать опасностей, создаваемых электричеством.
Опасность защитного зануления TN-C в быту
Определившись, что в квартирах старого жилого фонда с системой заземления TN-C проводка состоит только из фазы и нуля, перейдем к рассмотрению опасности использования «защитного зануления».
Отсутствующее по проекту заземление (зануление) делает эксплуатацию домашней электропроводки небезопасной. В нашем распоряжении остается только фаза и ноль, которые не обеспечивают защиту от пробоя фазы на корпус электроприбора.
Известно что при замыкании фазы с нулем (PEN) происходит короткое замыкание, мгновенное срабатывание автоматических выключателей и обесточивание сети. В связи с этим некоторые «экспериментаторы» проводят сомнительные манипуляции:
- Используют перемычки в розетках с заземлением. В этом случае перемычка ставится между заземляющим контактом и контактам нулевого проводника.
- Соединяют ноль с землей на корпусе электроприбора.
- Либо соединяют ноль с землей в распаечных коробках или этажных щитах.
Основная цель такой модернизации — добиться срабатывания автоматических выключателей при пробое фазы на корпус. Но делать так ни в коем случае нельзя. Стоит PEN проводнику пропасть (отгореть), и через нагрузку появляется опасный потенциал на всех корпусах электроприборов.
Рассмотрим подробнее ситуацию, когда у нас подключен бытовой прибор (например, стиральная машина). Если в розетке будет перемычка, то в случае обрыва нулевого проводника путь прохождения тока будет следующим:
Перемычки в розетках недопустимы
- По фазному проводнику через стиральную машинку.
- Далее ток будет возвращаться по нулевому проводнику в розетку.
- Поскольку дальше у нас идет обрыв, он через перемычку пойдет через PE проводник и окажется на корпусе стиральной машины.
- В этом случае, если человек коснется корпуса стиральной машины, его ударит током. Поэтому нельзя выполнять такой вид зануления перемычкой в розетке.
Следующий вариант — попытка выполнить зануление в этажном либо квартирном щите путем псевдоразделения PEN на PE и N. В этом случае устанавливается дополнительная шина, от которой отходят PE жилы на корпуса приборов. Данная PE шина соединяется перемычкой с основной N шиной, на которую приходит PEN от питающей линии. В случае появления опасного потенциала на корпусе благодаря перемычке произойдет короткое замыкание и домашняя сеть обесточится. Но, при пропадании нуля произойдет все то же, что и в предыдущем примере. При этом, если додуматься и соединить PE шину с корпусом щитка, то и на последнем будет опасный потенциал.
Если в щитке будет перемычка, то в случае обрыва нулевого проводника путь прохождения тока будет следующим:
Неправильное разделения PEN в TN-C
- Ток проходит через фазный проводник через электроприбор.
- Далее по нулевому проводнику идет в щит.
- В щите у нас разделение PEN.
- Через точку соединения мы получаем занос потенциала через PE на корпус электрического прибора.
Изображенная на рисунке схема неверна и по причине того, что разделение PEN должно производиться до коммутационного аппарата (в частности вводного автомата). Но даже если и сделать по правилам, то при отгорании нуля в месте до разделения PEN проводника занос потенциала через PE также будет происходить.
Важно не путать отгорание нуля в рассмотренных примерах с отгоранием нуля в распределительном щите, когда в розетках появляется повышенное напряжение.
Помимо опасности зануления важно понимать, что при разделении PEN на PE и N существуют требования к PEN проводнику. Сечение PEN-проводника должно быть не менее 10 мм² по меди и 16 мм² по алюминию. А таких сечений в этажных щитах домов старой постройки нет!
Предыдущая