Гальванометр – что измеряет и как работает. Принцип работы гальванометра

Что такое гальванометр

Гальванометр – это прибор для измерения параметров электроцепи

, точнее – минимальных значений I, R и количества электричества (при известной постоянной прибора). Чтобы выяснить, какое действие I используется в гальванометре, нужно остановиться на его комплектации.

Когда нужно либо обнаружить, либо замерить величину I крайне небольших значений, применяют гальванометр, обладающий высокой степенью чувствительности. Помимо прямого измерения, он реагирует присутствие или отсутствие I или U на определенном участке цепи.

История изобретения гальванометра

История создания гальванометра тесно связана с открытием понятия “электромагнитная индукция” и работой целой плеяды великих учёных мира, которые создавали новые варианты прибора и усовершенствовали его. Но о трёх эпохальных личностях в мире физики и гальванометров необходимо сказать отдельно:

  • Х.К. Эрстед;
  • Л. Гальвани;
  • М. Фарадей.

Датский учёный Ханс Кристиан Эрстед 15 февраля 1820 года, проводя эксперимент на лекции по электричеству, пропускал электрический ток через проводник, который лежал сверху корабельного компаса. В результате в момент включения цепи стрелка компаса отклонялась от своего начального положения. Проведя несколько аналогичных опытов с другими металлами и разным значением силы тока, Эрстед фактически доказал существование магнитного поля и электромагнитной индукции. А сам эксперимент (проводник, магнитная стрелка и источник питания) был заложен в основу первого гальванометра.

Луиджи Гальвани исследовал электричество, проходящее в живых и физически мёртвых организмах. Впоследствии на основе изучения “возвратного” удара были заложены условия для возникновения “гальванизма” — явления генерирования мышечных сокращений во время пропускания электрического тока. Это дало возможность создать и исследовать первые электрические индукции.

Майкл Фарадей в далёком 1831 году в конце августа (29), будучи в своей лаборатории, исследовал протекание электрического тока в проводнике и экспериментально доказал существование электромагнитной индукции, используя гальванометр для обнаружения этого явления. Которое перевернуло всю физику и фундаментальные законы природы, а именно наличие электромагнитного поля и индукции доказало существование нового вида материи.

Характеристики и особенности конструкции

Устройства, используемые в цепях постоянного тока, могут быть переносными. Они имеют подвижную рамку, закрепленную на растяжках, встроенную шкалу и указатель стрелочного или светового типа.

Стационарный гальванометр устанавливается по уровню. На рамке закрепляется небольшое зеркальце. Эти приборы оборудуются выносной шкалой, обеспечивающей повышенную чувствительность и световым указателем. Угловое перемещение рамки контролируется положением отраженного от зеркала светового луча, отклоняющегося на шкале. Подобные рамочные устройства используются как нуль-индикаторы. В их помощью в лабораторных условиях проводятся измерения малых токов и напряжений.

Практически каждый гальванометр оборудован магнитными шунтами. Их положение регулируется с помощью ручки, выведенной наружу. За счет этого в рабочем зазоре изменяется величина магнитной индукции. Подобная регулировка позволяет изменять значения измеряемых величин как минимум в три раза в соответствии с требованиями стандартов. В маркировке и технической документации прибора эти величины указываются в обоих крайних положениях шунта – при полном вводе и при полном выводе. В схеме гальванометра предусмотрен корректор, с помощью которого указатель перемещается от нулевой отметки в ту или иную сторону.

Многие устройства оборудованы специальными защитными приспособлениями. В их число входит арретир, фиксирующий подвижную часть на подвесе во время переноски прибора. Высокочувствительные гальванометры требуют защиты от помех. Для стационарных устройств оборудуются специальные фундаменты, предотвращающие механические воздействия. Против утечек тока используется электростатическое экранирование.

Следует отдельно рассмотреть баллистический гальванометр. Данный прибор позволяет измерить количество электричества, передаваемого короткими токовыми импульсами в течение долей секунды. Для того чтобы получить точные данные, необходимо увеличить момент инерции подвижной части за счет установки специального диска.

 Устройство и принцип действия

Ввиду высокой чувствительности гальванометрa вращающий и противодействующий моменты в них ничтожно малы. Поэтому при анализе работы гальванометра нельзя пренебрегать ни трением, ни тормозящими силами. Измерение силы тока с помощью гальванометра основано на наблюдении угла поворота рамки.

Этот угол обычно мал, поэтому приходится прибегать к искусственным оптическим приемам его опреде­ления. Наиболее распространенным является метод зеркального отсчета (рис.6). Луч света от осветителя падает на зеркальце, связанное с рамкой через нить подвеса, и после отражения падает на прозрачную шкалу, образуя на ней световой “зайчик”. При повороте рамки с зеркальцем на угол
, т.е. угол поворота рамки гальванометра прямо пропорционален числу делений шкалы n , на которое сместился ″зайчик″ Осветительное устройство, благодаря специальной оптической системе, обеспечивает изображение светового “зайчика” на шкале в виде светового круга или квадрата с линией в центре.

Уравнение движения рамки гальванометра. При отсутствии тока врамке плоскость ее витков расположена параллельно силовым линиям магнитного поля магнита. При протекании тока по ней возникает магнитное поле, вектор магнитной индукции которого перпендикулярен плоскости витков рамки. В результате взаимодействия: магнитных полей к рамке будет приложена пара сил Ампера, стремящаяся повернуть рамку перпендикулярно силовым линиям поля магнита. Вращающий момент пары сил равен

где N – число витков в рамке; в B- вектор магнитной идукции поля магнита; S – площадь витка рамка; I – сила тока в рамке. Вращающему моменту Мвр будет противодействовать упругий момент кручения Мупр , возникающий в нити подвеса при повороте рамки на угол
по закону Гука:

упр= -D

D

Кроме этих двух моментов на рамку с током будет действовать тормозящий момент Мтр, , обусловленный электромагнитным торможением и сопротивлением воздуха. Сопротивлением воздуха можно пренебречь. Электромагнитное торможение является следствием того, что в рамке во время ее движения индуцируется ток с направлением, противоположным основному току в рамке. Вследствие взаимодействия индукционного тока и магнитного поля магнита возникает тормозящий момент Мтр , который определяется по формуле
индNBS ,

Будет интересно➡  Виды соединения проводников

где =Iинд- величина индукционного тока, возникающего в цепи гальванометра, рамка которого замкнута на некоторое внешнее сопротивление Rвн ; Rg- сопротивление рамки гальванометра; угловая скорость ее вращения.
тр=

Коэффициент называется коэффициентом электромагнитного торможения. Поскольку величины B, S, N и RG постоянны для данного гальванометра, тормозящий момент Мтр определяется величиной сопротивления внешней цепи Rвн . Чем больше сопротивление внешней цепи гальванометра, тем меньше торможение рамки. Очевидно, наибольшее торможение будет при Rвн =0, то есть при коротком замыкании рамки. Это используется для так называемого демпфирования рамки, т.е. для быстрого ее успокоения. Наименьшее торможение будет при Rвн =∞, что соответствует разомкнутой цепи гальванометра. Разомкнув цепь гальванометра, можно заставить рамку совершать свободные колебания. Согласно второму закону механики для вращательного движения уравнение движения рамки гальванометра запишется в общем виде так

Виды гальванометров

Несмотря на общий принцип работы, данные измерительные устройства отличаются между собой в соответствии с особенностями конструкции каждого из них. Например, магнитоэлектрический гальванометр выдает показания с помощью специальной электропроводящей рамки, закрепленной на оси и помещенной в поле действия постоянного магнита.

В нулевом положении ее удерживает специальная пружина. Когда по рамке протекает ток, происходит ее отклонение на определенный угол. На величину угла оказывает влияние не только сила тока, но и жесткость пружины, а также индукция магнитного поля. Показав высокую чувствительность, эти приборы позволяют получить максимально точные результаты.

Данные измерительные устройства бывают еще нескольких видов:

  • Электромагнитные. Отличаются простой конструкцией, в состав которой входит неподвижная катушка и подвижный сердечник или магнит, втягивающийся в катушку или поворачивающийся при наличии электрического тока. Недостатком считается нелинейная шкала и затруднения при ее градуировке.
  • Тангенциальные. В конструкции имеется компас, с помощью которого сравниваются магнитные поля тока и Земли. В катушке применяется медная изолированная проволока, намотанная на рамку из диэлектрического материала. Обмотка и стрелка компаса в плоскости должны совпадать между собой. Под действием электрического тока на оси катушки создается магнитное поле, перпендикулярное магнитному полю Земли. Угол отклонения стрелки получается равным тангенсу отношения обоих магнитных полей.
  • Зеркальные. Считаются наиболее точными и быстродействующими устройствами. Показания снимаются с помощью небольшого зеркальца и отраженного от него светового луча.
  • Тепловые. Представляют собой проводник и рычажную систему. Длина проводника увеличивается, когда по нему проходит ток. Рычажная система преобразует удлинение проводника в положение стрелки на шкале прибора.

Принцип работы системы гальванометра

Для работы обычного гальванометра необходимо наличие нескольких взаимосвязанных частей устройства:

  • катушка;
  • ось якоря (качелька);
  • стрелка-указатель;
  • источник питания;
  • провода.

Электрический ток проходит от источника питания по проводам в катушку. В ней генерируется магнитное поле, которое влияет на положения якоря, а соответственно и на отклонения стрелки.

Чем больше сила тока, тем больше магнитное поле: стрелка отклоняется дальше. В зависимости от направления протекания тока, стрелка может отклоняться влево или вправо.

Принцип действия гальванометра

Гальванометр состоит из постоянного магнита, катушки из провода, которая смонтирована между полюсами магнита; очень легкого указателя, который присоединен к катушке и имеет одну ось вращения с ней; пружины, которая удерживает указатель на нуле, когда в катушке не течет ток.
Схема гальванометра

Когда ток течет через катушку, он создает магнитное поле вокруг нее. Взаимодействие магнитного поля катушки и магнитного поля, создаваемого постоянным магнитом, создает силу, которая заставляет катушку поворачиваться или вращаться. Если магнитное поле катушки достаточно сильно, катушка преодолевает сопротивление пружины и старается расположиться между полюсами постоянного магнита. Когда катушка перемещается, указатель также перемещается. Количество движения катушки и указателя пропорционально количеству тока, протекающего через катушку.

Позади указателя на гальванометре имеется шкала, откалиброванная в единицах измерения электричества. Таким образом, положение указателя на шкале показывает величину измеряемого электрического параметра.

Классификация гальванометров

Производители выпускают разные гальванометры. Несмотря на то, что все устройства действуют по одному принципу, разработан богатый ассортимент подвидов этого прибора. Различаются они между собой габаритами, конструктивными особенностями, шкалой делений, функциональностью, принципом работы.

По конструктивным решениям гальванометры делят на:

  • Портативные, внутрь которых вмонтирована шкала. В них применяют и привычные стрелки, и световую индикацию.
  • Зеркальные с независимой шкалой делений. Такие приспособления необходимо при подключении зафиксировать и выровнять строго по уровню.

У портативных элементы механизма размещены на растяжках, в зеркальных крепятся на гибком подвесе.

По области применения:

  • бытового назначения;
  • научно-исследовательские;
  • профессиональные (промышленные).

По принципу работы гальванометра:

  • магнитоэлектрические;
  • электромагнитные;
  • тангенциальные;
  • электродинамические;
  • тепловые;
  • зеркальные;
  • вибрационные.

Типовые конструкции

Все гальванометры по своим конструктивным особенностям могут подразделяться на два основных типа:

  • Переносные, используемые для цепей DC. Включают в себя рамку (подвижную), крепится на растяжках, шкалу, указатель (механический или световой).
  • Стационарные (зеркальные). Эти приборы не подлежат переноске и требуют в обязательном порядке выравнивания по уровню.

Особенности устройства стационарного гальванометра

Если в переносных подвижная рамка фиксируется при помощи растяжек, то в приборах стационарного типа она закреплена на подвесе.

Где:

1 – рамка с обмоткой.
2 – подвес.
3 – зеркало.
4 – безмоментная нить.

При подключении стационарного устройства к отрезку электрической цепи с протекающим током, рамка приходит в движение и начинает поворачиваться. Для того чтобы зафиксировать и измерить данный угол поворота, используется зеркало, на которое посредством специальной лампы подается световой луч.

Будет интересно➡  Обжим RJ-45. Инструмент для обжима коннекторов.

Основные характеристики гальванометров

Несмотря на простоту устройства подобных приборов, они также имеют основные характеристики и опции, определяющие их действие и чувствительность.

  • Одним из основных параметром устройства является постоянная. Ее значение определяется имеющейся длиной между шкалой и зеркалом и считается по стандартному отрезку протяженностью 1 метр. Для переносных данная величина считается ценой деления нанесенной шкалы. Составляет для современных приборов: стационарные – 10-11 А-м/мм, переносные приборы – 10-8 — 10-9 А/дел. Для всех видов приборов допускается погрешность в ±10%.
  • Постоянство “нуля” указателя (невозвращение стрелки к точке “ноль” при перемещении от крайнего положения, обозначенного на шкале). По данному параметру они различаются по разрядам постоянства. Данный показатель, имеющий числовое значение, в обязательном порядке указывается на шкале и наносится в виде ромбовидного штампа.
  • Наличие магнитного шунта. Его положение возможно изменять посредством поворота внешней ручки, что приводит к изменению: магнитной индукции в зазоре и постоянной гальванометра (по I в три раза). Таким образом, во всей технической документации, а также в паспорте прибора всегда указываются значения постоянной при 2 положениях шунта: в выведенном состоянии, в введенном состоянии.
  • Наличие корректора. Посредством его можно осуществлять перемещение стрелки (указателя) из одного крайнего состояния в другое.
  • Наличие арретира. Все статические устройства с подвесом оснащаются им в обязательном порядке, так как он позволяет жестко зафиксировать подвижную часть устройства. Это помогает предотвратить его повреждение при перемещении.
  • Наличие электростатического экранирования. Устанавливается в целях защиты прибора от I утечки.

Поскольку в них присутствует подвижная составляющая, ее движение и колебание пропорциональны успокоению, которое можно регулировать посредством подбора внешнего R. В паспорте изделия всегда указывается максимально допустимое внешнее R (критическое). На практике реальное R стараются подобрать как можно ближе к R критическому по значению. Это исключает возможность возникновения колебаний указателя вокруг положения равновесия.

Параметры гальванометра

Динамическая постоянная:
, где I – величина тока, протекающего через гальванометр; – расстояние между шкалой и зеркальцем прибора; n-смещение светового указателя по шкале, со­ответствующее силе тока I .

Динамическая постоянная прибора численно выражает величину тока, которая соответствует смещению светового указателя на I мм при расстоянии Принцип работы гальванометра - изображение 20
=1 м между. шкалой и зеркальцем прибора.Чувствительность прибора к току: Принцип работы гальванометра - изображение 21
, т.е. величина, обратная динамической постоянной прибора. Численно она выражает смещение светового указателя прибора в делениях шкалы, соответствующее току единичной величины (1А, 1mА или 1
А), при рас­стоянии между шкалой и зеркальцем прибора Принцип работы гальванометра - фотография 23
= I м.

Критическое сопротивление прибора. Характер движения рамки гальванометра зависит от величины электромагнитного торможения, обусловленного взаимодействием индукционного тока, который возникает в обмотке рамки при ее движении, и магнитного поля магнита. Величина электромагнитного торможения зависит от полного сопротивления цели гальванометра R=RG+Rвн.

Существует такое значение полного сопротивления, которое называется критическим сопротивлением, а режим, соответствующий этому сопротивлению- критическим. При критическом режиме работы прибора рамка его подходит к положению равновесия, не переходя через него, за кратчайшее время.

Рамочный гальванометр: 1 — постоянный магнит; 2 — рамка; 3 — стрелка-указатель; 4 — выводы рамки; 5 — шкала.

Зеркальный гальванометр: 1 — осветитель (лампа); 2 — гальванометр; 3 — зеркальце; 4 — шкала.
Вибрационный гальванометр: 1 — постоянный магнит; 2 — электромагнит; 3 — подвижная пластинка; 4 — бронзовая ленточка; 5 — обмотка для измеряемого тока; 6 — щель оптической системы; 7 — шкала.

Применение гальванометров

Гальванометр применяется не только как самостоятельный прибор, показывающий малые значения, I, U или выполняющего роль нуль-индикатора, но и также как основной блок многих других измерительных приборов. Ниже будет подробно рассказано о каждом из таких вариантов использования.

1. Как амперметр или вольтметр, а именно:

  • подключение сопротивления (шунтирующего) в параллель с устройством позволяет измерять ток (амперметр);
  • включение R (добавочного) последовательно к устройству дает возможность измерять напряжение (вольтметр).

Таким образом, даже при отсутствии подключенного сопротивления прибор может выполнять как функцию амперметра, так и вольтметра в зависимости от подключения его к интересующему участку цепи.

2. Как термометр или экспонометр:

  • при подключении фотодиода используется как экспонометр;
  • при соединении с датчиком температуры (термоэлементом) будет выполнять функции своеобразного термометра.

3. Как измеритель заряда.

Для данной цели применяют баллистический гальванометр. Он позволяет измерить одиночный импульс заряда, так как после его протекания через прибор происходит резкий отброс внутренней рамки.

4. Как индикатор нуля.

При имеющемся положении стрелки на “нуле” на градуированной шкале, устройство применяется в качестве нуль-индикатора и показывает отсутствие электрического параметра при подключении к участку цепи.

5. Для записи различных сигналов в осциллографе.

За счет своего конструктивного исполнения гальванометр в осциллографе подключается напрямую к пишущему устройству (писчику). При подаче какого-либо импульса прибор реагирует на него и приводит в движение писчик, которые отображает определенные колебания на бумаге. При этом, в данных ситуациях используются различные типы приборов:

  • С большим усилием, способные передвигать писчик по бумаге.
  • С малым. Это подойдет для тех вариантов использования, когда требуется лишь периодический и кратковременный контакт пишущего устройства с бумагой.

6. Для осуществления оптической развертки в системах лазерной оптики (зеркальные).

В настоящее время аналоговые приборы постепенно уступают место современным устройствам, работающим на основе цифровых технологий. Единственными типами гальванометров, востребованными и сегодня, являются зеркальные устройства, которые применяются в качестве одной из составляющей установки в лазерной технологии, так как способны производить отклонение луча лазера.

Порядок выполнения работы

Собрать схему: Т – тангенс–гальванометр, К – коммутатор для изменения направления тока в тангенс–гальванометре, mA – миллиамперметр, R – реостат, ε источник тока.

Будет интересно➡  Что такое неодимовый магнит и для чего он используется?

Установить компас на стеклянной подставке в центре тангенс–гальванометра.

Установить тангенс-гальванометр в плоскость магнитного меридиана так чтобы конец стрелки компаса совпадал с 0 о , а сама стрелка компаса располагалась вдоль витков тангенс–гальванометра.

Включить источник питания. Установить движок реостата в некотором положении и измерить величину тока I1.

Как только стрелка компаса придет в равновесие, отсчитать по круговой шкале отклонение α1.

Не меняя величины тока, I1 изменить переключением коммутатора направление тока и измерить величину отклонения стрелки компаса α2. Взять среднее значение угла α.

Опыт повторить пять раз при различном токе. Величину тока изменяют реостатом R.

Измерить линейкой радиус витков тангенс–гальванометра и сосчитать число витков n (Величины R, n указаны на основании подставки).

Рассмотрим соотношение, связывающее угол поворота рамки j с величиной смещения светового штриха по шкале n и расстоянием от шкалы до зеркала l. Луч света от источника 1 падает на зеркало гальванометра 2. При повороте зеркала на угол j отклонение луча от нулевого положения равно 2j. Если световой штрих отклонится по шкале на n делений, а расстояние от зеркала до шкалы l (в метрах), то

При небольших отклонениях рамки (до 4°) tg 2j ≈ 2j и .

Для измерения количества электричества, протекающего через гальванометр при кратковременных одиночных импульсах тока длительностью t, должно выполняться условие t Предыдущая статья: Величины, характеризующие магнитное поле в вакууме и веществе Следующая статья: Измерение индукции магнитного поля баллистическим методом

Цель работы. Изучить устройство и принцип действия электроизмерительных приборов магнитоэлектрической системы. Измерить основные характеристики гальванометра.

Как правильно использовать?

Гальванометры можно с уверенностью назвать целым классом измерительного оборудования, характеризующегося максимальным уровнем точности и используемого для исследований величины электрического тока, проходящего через проводники, а также других его параметров. За счёт широкого ассортимента моделей и их функциональных возможностей эти измерительные приборы успешно эксплуатируются на производстве, в быту и в лабораторных условиях. При этом простейшее устройство можно изготовить своими руками.

Гальванометр работает как в качестве самостоятельного оборудования, отображающего параметры малых токов или выполняющего функции нуль-индикаторов, так и в виде основного блока других приборов. Так, существует вариант использования описываемой техники в качестве амперметра и вольтметра. Для этого потребуется:

  • подключить шунтирующее сопротивление параллельно с устройством для определения силы тока в амперах;
  • установить в цепи добавочное сопротивление последовательно для измерения напряжения.
    Помимо указанных вариантов, гальванометры способны эффективно выполнять функции других приборов.
  1. Термометра в тандеме с датчиком температуры и экспонометра при подключении фотодиода.
  2. Измерителя заряда. Речь в данном случае идёт об эксплуатации именно баллистических гальванометров, предоставляющих возможность определить параметры одиночных импульсов, при прохождении которых происходит резкое движение (отброс) рамки.
  3. Индикатора нуля, эффективно определяющий отсутствие электрического тока в цепи при фиксации указателя на нулевой отметке, градуированной соответствующим образом шкалы.
  4. Устройства для записи сигналов осциллографа. Конструктивные особенности позволяют подключить гальванометр непосредственно к так называемому писчику. В итоге при фиксации любого импульса прибор моментально реагирует и параллельно активирует пишущее устройство, которое, в свою очередь, отображает все данные на бумаге.
  5. Средства для выполнения оптической развёртки. Имеется в виду использование зеркальных моделей в системах лазерной оптики.

На данный момент аналоговые конструкции активно сдают свои позиции, уступая место современным, цифровым устройствам. В соответствии с актуальными статистическими данными, наиболее распространёнными сейчас являются зеркальные гальванометры. Они до сих пор достаточно широко эксплуатируются в качестве элементов различных лазерных установок. Это обусловлено их способностью отклонять лучи лазера.

Независимо от типа измерительного оборудования, его конструкции и функциональных возможностей, к его эксплуатации следует подходить грамотно. Параллельно требуется помнить о технике безопасности, поскольку речь идёт о работе с электрическим током. Не менее важными моментами будут правила хранения и обслуживания приборов, закреплённые в соответствующих инструкциях.

В следующем видео вы подробно узнаете о том, что такое вертикальный гальванометр и какие его принципе работы.

Применение гальванометра в физике и повседневной жизни

Профессионалы всех отраслей промышленности, специалисты других сфер деятельности применяют гальванометры для измерения данных, которые доказывают соответствие определенных величин заданному диапазону. Таким образом производится результативное наблюдение за актуальным состоянием электроцепей, заблаговременно устраняются недочеты или поломки.

Ученые активно применяют высокоточное устройство в лабораторных и научно-исследовательских целях. Физики измеряют гальванометром силу тока. Для этого приспособление подключают таким образом, чтобы через него прошел весь электрический ток в цепи. Чтобы достичь такого результата, цепь размыкают на каком-нибудь участке, концы присоединяют к контактам прибора. Так оборудование оказывается последовательно включенным в цепь и готовым к использованию.

В бытовых условиях гальванометр применяют как аналоговый датчик для определения силы тока.

Все вышеперечисленные виды приборов просты в изготовлении и применении.

Высокотехнологичность, присущая настоящему времени, диктует свои условия. На данном этапе активно применяются инновационные разработки и почти везде внедрены электронные аналоги. Безусловным преимуществом называют их работоспособность, а также точность обозначений и измерений.

Интересно, что гальванометр является одновременно и самодостаточным оборудованием, и используется в качестве основы других приборов. Важна и функция нуль-индикатора, которой наделен главный герой статьи. Разработан вариант применения гальванометров в качестве амперметра, вольтметра, устройства для фиксации сигналов осциллографа. Этот факт значительно расширяет диапазон возможностей, поэтому шкала может обозначаться парой-тройкой электрических показателей. В список измеряемых гальванометром величин входят и единицы напряжения.

Предыдущая
РазноеДелаем токопроводящий клей из подручных материалов
Следующая
РазноеЧто такое фаза в электричестве?
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять