Что такое сердечник трансформатора: строение и виды магнитопроводов. Что такое магнитопровод или сердечник?

Что значит сердечник?

Сердечник (в электротехнике) — стержень, являющийся внутренней частью чего-либо, на который навивается, надевается что-либо (например, сердечник троса или электромагнита, либо каркас трансформатора или катушки, магнитопровод).

Почему сердечник называют магнитопроводом?

Если возникает потребность в его усилении, применяются магнитопроводы. Также они называются сердечниками. Магнитными свойствами обладают различные материалы. Наиболее эффективными усилителями электромагнитного поля являются материалы, именуемые ферромагнетиками.

Для чего и в каких случаях в конструкцию трансформатора входит магнитопровод?

Магнитопровод представляет собой магнитную систему трансформатора, по которой замыкается основной магнитный поток. Одновременно магнитопровод служит основой для установки и крепления обмоток, отводов, переключателей и других деталей активной части трансформатора.

Конструктивные особенности

Наибольшая индуктивность получается, когда сердечник замкнут. Такой магнитопровод может быть тороидальным если он имеет вид бублика (тороида). Они используются для получения минимальной индуктивности рассеяния, то есть магнитного поля находящегося вне магнитопровода. Но поскольку они сложны в изготовлении, чаще применяются магнитопроводы из двух зеркально — симметричных частей вставляемых внутрь цилиндрической катушки, удобной в изготовлении.

В материале магнитопровода можно условно выделить множество короткозамкнутых обмоток. Переменный ток в обмотке вызывает в них токи потерь. Чтобы потери уменьшились, он делается многослойным с надёжной изоляцией слоёв друг от друга. Обычно для этого используются пластины необходимой формы. Из них изготовлены в большинстве своём все трансформаторы и дроссели, используемые в сетях централизованного электроснабжения. Реже используется конструкция в виде ленты в рулоне. Её сложнее состыковать с остальными деталями магнитопровода, если таковые имеются.

Конструктивно сердечники бывают стержневыми и броневыми. Они широко используются в трансформаторах и дросселях как показано на изображениях ниже:

  Стержневой сердечник с двумя стержнями   Стержневой сердечник с тремя стержнями   Броневой сердечник

Про магнитопроводы трансформатора смотрите отдельную статью по ссылке.

Металлические сердечники из сплавов на основе железа используются во всех электрических машинах, работающих на напряжении с частотой 50 Гц. На изображении показан магнитопровод электродвигателя. Пазы предназначены для расположения витков обмотки.

Пазы

Увеличение частоты заметно уменьшает массу и габариты сердечников. Очень наглядным примером этого являются цокольные люминесцентные лампы. Но в высокочастотных устройствах приходится применять другие материалы для изготовления магнитопроводов. Даже самые тонкие пластины из сплава на основе железа нагреваются на высоких частотах неприемлемо сильно.

С увеличением частоты более 50 Гц для сердечников применяется сплав пермаллой на основе никеля, а на частотах более 1 кГц – сердечники из спекаемого порошка. Сердечники из пермаллоя конструктивно такие же, как и те, что изготовлены на основе железа – стержневые и броневые, только поменьше размером при равных мощностях трансформаторов и электродвигателей. А вот сердечники из порошка весьма разнообразны по своему составу. Они имеют небольшие размеры и технологичны в изготовлении не только для стержневых и броневых конструкций, но и для чашек, как видно на изображении слева.

Будет интересно➡  Силовые розетки для электроплиты. Правила выбора и установки розетки и вилки для электроплиты

Эти сердечники применяются в импульсных источниках электропитания, электронных балластах люминесцентных ламп и в различных радиоэлектронных устройствах в колебательных контурах, трансформаторах и фильтрах. В качестве материала сердечника наиболее широко используются различные марки ферритов.

Словом, современные материалы позволяют изготавливать магнитопроводы для решения большинства технических задач.

Усилитель магнитного поля

Если возникает потребность в его усилении, применяются магнитопроводы. Также они называются сердечниками. Их материал и конструкция зависят от назначения устройства. Материал сердечника является его самой важной составляющей. Свойства материала в основном определяют процессы, которые происходят в сердечнике. Эти процессы различны в случае его взаимодействия с постоянным и переменным током.

Простейший магнитопровод это стержень круглого или иного по форме сечения. Его охватывают витки катушки, которая в тех или иных устройствах называется обмоткой. Магнитными свойствами обладают различные материалы. Наиболее эффективными усилителями электромагнитного поля являются материалы, именуемые ферромагнетиками. Это сплавы на основе железа с добавлением некоторых других компонентов. Добавки определяются свойствами сплава, которые стремятся получить в результате.

Если из такого сплава изготовить монолитный цилиндр и поместить его внутрь катушки получится устройство, которым можно пользоваться для тех или иных целей. Если ток в обмотке будет постоянным, такое устройство будет создавать постоянное магнитное поле. Получится электромагнит. Для того чтобы в сердечнике увеличивалась сила магнитного поля надо увеличивать либо силу тока в обмотке, либо число витков в обмотке, либо и то и другое вместе.

Но увеличение силы магнитного поля в сердечнике ограничено свойствами сплава. Этот эффект называется магнитным гистерезисом, а состояние магнитопровода – насыщением. Графически процессы в магнитопроводе отображаются в виде петли гистерезиса:

Магнитный гистеризис

Насыщение магнитопровода начинается вблизи горизонтального участка кривой при движении по ней от нуля.

Любая катушка обладает индуктивностью. Сердечник эту индуктивность существенно увеличивает. Поэтому такие катушки применяются в цепях переменного тока и называются дросселями. Индуктивность определяется в первую очередь массой сердечника. Расстояние между его концами является следующим параметром, который влияет на величину индуктивности и называется зазором.

Типы сердечников импульсных трансформаторов

Классифицируются сердечники компонентов индуктивности, используемые в импульсной технике, по форме и магнитным свойствам материала.

Формы и свойства ферритовых сердечников

Ферритовые сердечники делятся на:

  • Разборные, состоящие из 2-х частей;
  • Кольцевые;
  • Продольные.

Наибольшее распространение получили P- и Е-сердечники, которые состоят из 2-х частей и кроме 2-х боковых линий магнитопровода имеют ещё центральную часть. Такого типа сердечники имеют наибольшее количество вариантов форм с соответствующими обозначениями. P-сердечники ещё называют чашеобразными, они имеют максимальную магнитную проницаемость.

У Е-сердечников боковая часть магнитопровода имеет меньшую ширину, поэтому они являются максимально компактными. К тому же они имеют толще стенки, поэтому более стойки к механическим повреждениям.

Будет интересно➡  Что такое электроустановка?

Для поверхностного монтажа разработаны компактные варианты форм сердечников. Это планарные типы SMD-трансформаторов или дросселей.

Материалы сердечников

В качестве материалов для сердечников высокочастотных и импульсных трансформаторов, также дросселей используются магнитомягкие вещества, например, ферриты. Это материалы на основе оксида железа (Fe₂O₃). Для них свойственно быстрое размагничивание, по сравнению с магнитотвёрдыми, которые после их намагничивания становятся постоянными магнитами. Ферриты обладают малыми потерями на вихревые токи (токи Фуко) и более вытянутой петлёй гистерезиса.

Ферриты, предназначенные для силовых трансформаторов, автотрансформаторов и дросселей, работающие на частоте от 10кГц до 300кГц (максимум 500кГц) имеют такие марки в диапазоне начальной магнитной проницаемости:

  • 650 – 900 — 3F5, 3F4, 3F45;
  • 1200 – 1400 — TP5B, TP5, PC50;
  • 1500 – 1800 — N92, TP4E, TP4F, 3C92, CF122, 3C93, CF292;
  • 2000 – 2100 — N27, CF196, TP4S, 3C96, CF138, N67, 3C30, 3C34, CF139, 3F3, TP4G;
  • 2200 – 2300 — N87, PC90, 3C90, TP4, 3C94, PC40, CF297, N97, TPB22;
  • 2400 – 2500 — TP4A, PC44, CF124, N72, PC47, TP4D, TP4B;
  • 2700 – 3000 — 3C81, N41, 3C91, CF101, CF130, TK, TP4W, CF295, 3C95;
  • 3200 – 3300 — TP4C, PC95, TPW33;
  • 3800 — TP1.

Какую роль играет сердечник в катушке?

Ферритовый сердечник — пассивный элемент, для подавления паразитных магнитных полей в трансформаторах или катушках индуктивности

Марки ферритов

Ферриты по своему составу подразделяются на две группы: марганцово-цинковые и никель-цинковые. Марганцово-цинковые ферриты обозначают буквами НМ, соответственно, никель-цинковые вещества маркируют литерами – НН. Число перед буквенным обозначением феррита означает величину начальной магнитной проницаемости в единицах µнач. Этот показатель даётся с корректировкой номинального значения. Например, феррит марки 4000НМ имеет магнитную проницаемость с отклонением в пределах от – 800 до + 500 µнач.

Магнитопроводы имеют исключительное значение в формировании таких приборов, как трансформаторы и другие электротехнические устройства. От их качественного состава во многом зависят исходные технические характеристики приборов.

Способы размагничивания

Существует несколько способов размагничивания металлических конструкций. Устройства применяются в зависимости от частоты использования, назначения и мощности. Перед тем, как размагнитить металл в домашних условиях, необходимо разобраться со существующими конструкциями.

  1. Обычный магнит крупного размера, над ним проводится инструмент при минимальном расстоянии, на грани с процессом притягивания. Магнит можно извлечь из старого динамика, большинство из которых круглой формы. Процесс производится при удалении изделия от конструкции, расшатывая его, чем дальше инструмент от конструкции, тем меньше амплитуда. Расположение оси, на которой отсутствует магнитное поле, зависит от конструкции изделия.
  2. Более частое использование потребует прибора, эксплуатируемого при домашних условиях от электросети. Изготовить прибор возможно в домашних условиях или приобрести на торговых рядах радиодеталей. Основная составляющая – катушка с намотанной проволокой, подключенная к трансформатору. Подача переменного тока позволяет размагнитить элемент, постоянного – наоборот.
Будет интересно➡  Провод ПВ 3: Технические характеристики, область применения

Существует множество вариаций, комплектов для размагничивания металлов на производстве.

Туннельные устройства включают в себя катушку, имеющую отверстие, подключенную к сети.

Размер отверстия может быть различным, зависит от назначения и габаритов обрабатываемых деталей. Многополосные магниты, приводимые движением, вращение которых происходит с регулировкой скорости, воздействие и изменение амплитуды производится путем отвода детали от корпуса.

Электромагниты работают от сети 220 или 380 вольт, позволяют размагнитить элемент отводом на определенное время. Контейнерные механизмы позволяют установить изделие к устройству, в котором автоматически создается необходимая среда.

Как изготовить прибор для размагничивания в домашних условиях

Изготовить электромагнит для размагничивания возможно в домашних условиях, для этого понадобятся некоторые материалы и подручные средства. Эксплуатация происходит за счет контроля тока, постоянное напряжение способно намагнитить элемент, а переменное наоборот производит действия.
Катушку возможно изготовить из деталей старого телевизора, а точнее петли размагничивания кинескопа. Важно соблюдать последовательность при изготовлении для корректного процесса.

  • Петля сворачивается несколько раз до достижения катушки необходимого диаметра. Если одной петли недостаточно, можно последовательно прибавить вторую, такая конструкция позволит работать с крупными элементами.
  • Подключается предохранитель и кнопка для нормальной, бесперебойной работы.
  • Конструкции на 220 Вольт можно использовать постоянно, рассчитанные на 110 В подключаются кратковременно, 12 В используются через трансформатор.
    Полученный механизм отлично подойдет для габаритных деталей. При действиях с небольшими устройствами, в домашних условиях можно приготовить мини комплект. Для работы применяется любая катушка, например от старого бобинного проигрывателя, последовательно соединяется с трансформатором. Использование происходит путем подачи напряжения, деталь помещается вблизи механизма, затем извлекается, при этом питание устройства остается во включенном состоянии.

Преимущества использования электромагнитов

Главным преимуществом электрического магнита перед постоянным источником магнитного поля заключается в том, что он приводится в рабочее состояние под воздействием электрического тока. То есть, когда нужно оказать магнитное влияние на определённую часть пространства, ток включают. Это позволяет обеспечивать ритмичную работу ЭМ, что с успехом применяется в разных видах электро оборудования, приборов и устройств.

Электромагнит можно обнаружить в электрических счётчиках, сепараторных установках, трансформаторах, теле,- и аудиотехнике и других устройствах.

Мощные магниты установлены на мостовых кранах в цехах металлургических заводов и лебёдках предприятий по сбору металлолома.

Что такое сердечник трансформатора: строение и виды магнитопроводов. Что такое магнитопровод или сердечник?
Грузоподъёмные электромагниты

Одно из первых применений ЭМ – это динамики. Звуковое устройство в своей основе имеет электромагнит, который заставляет колебаться мембрану в звуковом диапазоне.

ЭМ используются в металлоискателях для обнаружения металлосодержащих предметов под землёй, в воде и различных массивах.

Предыдущая
РазноеДля чего и в каких случаях измеряют сопротивление изоляции. Измерение сопротивления изоляции мегаомметром
Следующая
РазноеСистемы заземления TN-C, TN-S, TN-C-S, TT, IT со схемами (ПУЭ). Системы заземлений - преимущества и недостатки
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять