Схема АВР: типовые схемы подключения на 2 и 3 ввода, на контакторах

Что такое автоматический ввод резерва и как работает АВР? Основные схемы АВР и их особенности.

Что такое АВР и его назначение?

В подавляющем большинстве случаев такие системы относятся к электрощитовым вводно-коммутационным распредустройствам. Их основная цель — оперативное подключение нагрузки на резервный ввод, в случае возникновения проблем с энергоснабжением потребителя от основного источника питания. Чтобы обеспечить автоматическое переключение на работу в аварийном режиме, система должна отслеживать напряжение питающих вводов и ток нагрузки.

Типовой щит АВР
Типовой щит АВР

Расшифровка аббревиатуры АВР

Данное сокращение это первые буквы полного названия системы – Автоматический Ввод Резерва, как нельзя лучше объясняющее ее назначение. Иногда можно услышать расшифровку «Автоматическое Включение Резерва», такое определение не совсем корректное, поскольку под ним подразумевается запуск генератора в качестве резервного источника, что является частным случаем.

Классификация

Вне зависимости от исполнения, блоки, шкафы или АВР принято классифицировать по следующим характеристикам:

  • Количество резервных секций. На практике чаще всего встречаются АВР на два питающих ввода, но чтобы обеспечить высокую надежность электроснабжения, может быть задействовано и больше независимых линий. Шкаф АВР на три ввода
    Шкаф АВР на три ввода
  • Тип сети. Большинство устройств предназначено для коммутации трехфазного питания, но встречаются и однофазные блоки АВР. Они применяются в бытовых сетях электроснабжения для запуска двигателя генератора. Применение АВР в частном доме
    Применение АВР в частном доме
  • Класс напряжения. Устройства могут быть предназначены для работы в цепях до 1000 или использоваться при коммутации высоковольтных линий.
  • Мощностью коммутируемой нагрузки.
  • Время срабатывания.

Требования к АВР

В число основных требований к системам аварийного восстановления электроснабжения входит:

  • Обеспечение подачи питания потребителю электроэнергии от резервного ввода, если произошло непредвиденное прекращение работы основной линии.
  • Максимально быстрое восстановление электропитания.
  • Обязательная однократность действия. То есть, недопустимо несколько включений-отключений нагрузки из-за КЗ или по иным причинам.
  • Включение выключателя основного питания должно производиться автоматикой АВР до подачи резервного электропитания.
  • Система АВР должна контролировать цепь управления резервным оборудованием на предмет исправности.

Описание и принцип работы

Катушка магнитного пускателя подключается на один из вводов. В нормальном режиме напряжение поступает на катушку, она замыкает контакт КМ1-1, а контакт КМ1-2 размыкается. как работает АВР на одном пускателе

SF1 и SF2 в схеме – это однополюсные автоматические выключатели.

Напряжение через контактор поступает к потребителю. Дополнительно в схеме могут быть подключены сигнальные лампы. Они визуально будут показывать какой из вводов в данный момент подключен. Немного измененная схемка с лампочками:

ввод резерва на одном контакторе

Если напряжение на первом вводе исчезло, контактор отпадает. Его контакты КМ1-1 размыкаются, а КМ2-1 замыкаются. Напряжение начинает поступать к потребителю с ввода №2. схема ввода резерва на одном контакторе

Если вам в нормальном режиме просто нужно проверить работоспособность схемы, то выключите автомат SF1 и смотрите как реагирует сборка. Все ли работает исправно.

Самое главное здесь изначально проконтролировать на какой ток рассчитаны эти самые нормально замкнутые и разомкнутые контакты. дополнительные контакты для АВР пускателя

При этом обратите внимание, что эту простейшую схему можно собрать двумя способами:

  • без разрыва ноля
  • с разрывом нулевого провода

Простая схема АВР на 2 ввода

Простейшая схема АВР для двух однофазных вводов собирается всего лишь на одном магнитном пускателе. Для этого понадобится контактор с двумя парами контактов: контактор с нормально разомкнутыми и замкнутыми контактами

  • нормально разомкнутым
  • нормально замкнутым

Если таковых в вашем контакторе не оказалось, можно использовать специальную приставку. приставка накладка на контактор допконтакты

Только учтите, что контакты у большинства из них не рассчитаны на большие токи. А если вы решите подключать через АВР нагрузку всего дома, то уж точно не стоит этого делать, используя блок контакты расположенные по бокам стандартных пускателей.

Для этих целей лучше выбирать аппаратуру, изначально в своей конструкции имеющую именно силовые замкнутые и разомкнутые контакты. Подойдут такие марки как VS 463-33 или ESB-63-22, МК-103 от DeKraft, КМ ИЭК.
Что такое автоматический ввод резерва и как работает АВР? Основные схемы АВР и их особенности.
Что такое автоматический ввод резерва и как работает АВР? Основные схемы АВР и их особенности.
Что такое автоматический ввод резерва и как работает АВР? Основные схемы АВР и их особенности.

Вот самая простая схема АВР:

простая схема АВР на одном пускателе для дома

Схема ввода резерва с разрывом ноля

Без разрыва можно применять в том случае, если у вас есть две независимые линии эл.передач или кабельных ввода, от которых вы собственно и подключаете весь дом. А вот когда резервной линией является какой-то автономный источник энергии – ИБП или генератор, то здесь придется разрывать как фазу, так и ноль. схема АВР для дома от генератора с разрывом нулевого провода

Так как основная сеть в 90% случаев выполнена с глухозаземленной нейтралью, а от генератора или ИБП идет с изолированной. Здесь объединять нулевой рабочий проводник от сети, с нулем от генератора нельзя.

Естественно, что все контакторы подключаются после счетчика kWh. QF – это модульные автоматы в щитке дома.

Если у вас второй источник питания подает напряжение не автоматически, например бензиновый генератор без пусковой аппаратуры. Который нужно сначала вручную завести, прогреть и только потом переключиться, то схемку можно немного изменить, добавив туда одну единственную кнопку.

Будет интересно➡  Виды соединения проводников
схема АВР с кнопкой запуска генератора

За счет нее не будет происходить автоматического переключения. Вы сами выберите для этого нужный момент, нажав ее когда потребуется. Монтируется эта кнопка SB1 параллельно катушке контактора. алюминиевая проводка в квартире и дома новые правила

Когда у вас напряжение на основном вводе не исчезает на долго, а периодически пропадает и появляется (причины могут быть разными), в этом случае не желательны постоянные переключения контакторов туда-обратно. Здесь целесообразно использовать специальную приставку к контактору типа ПВИ-12 с задержкой времени.

приставка к контактору ПВИ-12 для задержки времени

Схема АВР на два ввода 380В

Трехфазная схема практически аналогична однофазной. трехфазная схема АВР для дома на одном пускателе

Только особо следите за правильной фазировкой АВС. Она должна совпадать на вводе-1 с вводом-2. Иначе 3-х фазные двигатели после переключения будут крутиться в обратную сторону.

Схема АВР на 3 ввода с генератором

Как и на чем реализовать подобный ввод резерва? Здесь можно применить схему АВР на базе AVR-02 от компании ФиФ Евроавтоматика. AVR-02 фиф автоматика и его схема

На сегодняшний день, стоимость таких устройств сопоставима с ценой хорошего корпуса эл.шкафа от ABB. Но там вы получите пустую железную коробку, а здесь умные мозги, которые будут управлять и защищать всю ваше домашнюю электросеть.

В принципе есть смысл один раз потратиться и защитить себя и свое оборудование раз и навсегда.

Где купить реле и контакторы?

На момент написания данной статьи, пожалуй, единственный интернет-магазин (в России), в котором подобные комплектующие имеются всегда в достаточном ассортименте и по нормальным ценам – это АВС-электро

Алгоритмы систем АВР

Система АВР должна работать по определенному алгоритму, учитывающему возможное поведение оборудования и внешние факторы. Приводится типичная блок-схема бытовой системы АВР

Вот примерно по такому алгоритму должна работать простая система АВР с резервным двигатель-генератором:

При сбое в электроснабжении система сначала выжидает несколько секунд и, если положение не нормализовалось, идет команда на запуск автономного генератора. Начинается отсчет времени, необходимого для запуска приводного двигателя. На нашей схеме ожидание равно 20 секундам, но может быть и другим, в зависимости от конкретного двигателя.

В случае удачного запуска, если никакая защита не обнаруживает ненормальных режимов, идет отключение потребителя от питающей сети, и после этого – подключение к резервному источнику, который к этому времени уже запущен, и готов принять нагрузку. После этого потребители начинают работать от резервного источника электропитания.

В случае неудачного запуска делается пауза в 10 секунд и после этого предпринимается попытка повторного запуска. А в случае и второй неудавшейся попытки предпринимается третья по тому же алгоритму. В случае третьей неудачи попытки запуска прекращаются, а сигнализация показывает, что двигатель запустить не удалось.

При восстановлении электроснабжения на основном вводе выжидается одна минута и, если за этот промежуток времени сбоев не происходит, то питание переключается на основной ввод. Двигатель генератора еще 2 минуты работает и, если на основном вводе все нормально, генератор останавливается.

Развивая тему АВР с бензогенератором в качестве резервного источника питания, предлагаю на ваш суд практическую схему с автоматическим запуском генератора и автоматическим переключением питания с сети на автономный источник и обратно

Собственно, схему я уже публиковал здесь, и она представляет собой не идеальное, но вполне работоспособное решение. К недостаткам можно отнести всего лишь одну попытку запуска. При неудаче повторную попытку можно произвести, только сбросив схему с помощью кнопки. Хотя при появлении напряжения на главном вводе, схема сбрасывается самостоятельно.

Безусловно, подобное решение можно сделать и с помощью микроконтроллеров, но для понимания логики и наглядности удобней изучать релейную схему.

Секционированные системы АВР

Теперь о секционированных системах АВР. Характерные признаки таких систем – разделение нагрузки на две или более независимых питающих линии. В случае выхода из строя одного из вводов, его нагрузка подключается к исправному.

Такая схема более гибкая и удобна для ремонтных и профилактических работ. Так как оба ввода в работе, отпадает необходимость следить за готовностью резервной линии к принятию нагрузки. Но наличие в схеме секционного выключателя или контактора несколько усложняет ее. Несмотря на это, схема с двумя секциями в настоящее время самая распространенная в распредустройствах как низкого, так и высокого напряжения.

На схеме ниже показана основа сенкционированной АВР:

Кратко: SA1 и SA2 – автоматы, защищающие свои линии, К1-К3 – контакторы, либо выключатели с дистанционным управлением. Пока все просто, но надо обеспечить работу К1-К3 по определенному алгоритму. При кажущейся простоте, здесь много подводных камней, поэтому нет единой универсальной схемы управления, и немного позже мы рассмотрим несколько вариантов реализации двухсекционной системы автоматического включения резерва.

Ниже приведена схема АВР двухсекционной системы с минимальным количеством элементов и с простейшей логикой:

Будет интересно➡  Заряд конденсатора

Как видим, всю логику решают два контактора. Когда напряжение присутствует на обеих вводах, каждая секция питается от своего ввода. Это нормальный режим работы. В случае пропадания напряжения на одном из вводов отключается соответствующий контактор (К1 или К2). При этом секция отключается от своего ввода (контактом К1.1 или К2.2) и подключается к другому, рабочему, вводу соответственно контактом К1.2 или К2.2. При возобновлении питания контактор срабатывает и схема возвращается в исходное состояние.

При практическом использовании данной схемы, в первую очередь, нужно учитывать, что недопустима ситуация, когда замыкающий контакт уже замкнул цепь, а размыкающий еще не разомкнул. Поэтому нужно очень внимательно подойти к выбору контакторов. Также желательно, чтобы вводы были сфазированы, чтобы, если вдруг такое произойдет (например, приварились контакты), облегчить последствия. В дальнейшем мы будем совершенствовать схему, добавим выдержки времени и различные блокировки.

Элементы систем АВР

Вот, к примеру, блок ввода резервного питания AVR-01, взятый в качестве иллюстрации к данной статье. Стоит ящичек в районе 150 американских рублей, недорого в общем, так что попробуем разобраться, что он делает, и чего не делает.

Итак, заявленные функции:

Блок контролирует параметры напряжения на основном и резервном вводах питания. Нагрузка подключается к основному
вводу. При аварии на основном вводе нагрузка переключается на резервный. При восстановлении напряжения нагрузка переключается на основной ввод питания.
Функциональные особенности:
1. Контроль чередования фаз.
2. Контроль асимметрии между фазами.
3. Контроль верхнего и нижнего значения напряжения.
4. Контроль состояния контактов контактора.
5. Внешние входы аварийного отключения вводов.
Напряжение питания: 230 В АС(питание от фазы C)
Количество вводов: 2
Максимальный ток контактов реле: 2х8А АС1
Максимальный ток катушки контактора: 2А
Контакт 2х(1Z,1R)
Порог напряжения – регулируемый:
нижний U1 160 – 210 В
верхний U2 230 – 260 В
Время отключения:
для нижнего порога U1 2 сек.
для верхнего порога U2 0,1 сек.
Время переключения с основного
на резервный ввод 0,5 сек.
Время включения основного ввода при восстановлении напряжения, регулируемое 2 сек.- 10 мин.

Ну что тут сказать? Цена соответствует содержанию, на отдельных реле дешевле вряд ли получилось бы. Два восьмиамперных контакта – маловато, но в отдельных случаях позволяет обойтись без дополнительного контактора. Но для случая АВР с самозапуском бензогенератора нужно другое устройство, реализующее более сложный алгоритм, описанный мною в этой статье немного выше.

В продолжение об одном полезном реле для систем АВР.

Реле-счетчик импульсов

Крепление осуществляется как с помощью съемных винтовых зажимов, так и стандартно на din-рейку, в зависимости от модификации.

На лицевой панели реле расположен трехдекадный переключатель «Уставка» для установки заданного количества импульсов, поступающих на вход «Y1», индикатор включения напряжения питания «Сеть», индикатор срабатывания встроенного электромагнитного реле «Реле» и DIP – переключатель «Функция» для выбора диаграммы работы и интервала времени, когда будет включено встроенное исполнительное реле. DIP-переключатель состоит из четырех независимых контактных пар (переключателей).

Реле имеет 8 значений выдержки времени, которые выбираются с помощью контактных пар 1,2,3 DIP – переключателя «Функция». Диаграмма работы выбирается с помощью переключателя 4 в соответствии с таблицей. Таблица расположена на боковой стенке устройства.

Когда переключатель 4 находится в нижнем положении, работа реле начинается с «импульса». Встроенное исполнительное реле (далее реле) включается одновременно с подачей питания на прибор и выключается после отсчета заданного количества импульсов (уставки) «N» на переключателе «Уставка».

Время выключения реле определяется установленной выдержкой времени «t» в соответствии с диаграммой. Верхнее положение 4 переключателя соответствует работе реле с «паузы» (при подаче питания реле остается в выключенном состоянии).

Реле включается после отсчета уставки «N» на время установленной выдержки времени «t». Когда реле включено, замкнуты контакты  15-18 и 25-28 и включен желтый индикатор «Реле», когда выключено – замкнуты контакты 15-16 и 25-26, желтый индикатор выключен.

Обнуление сосчитанного количества импульсов или установка реле в исходное состояние во время отсчета установленной выдержки времени осуществляется по переднему фронту команды «Сброс». По заднему фронту команды «Сброс» счет импульсов заново возобновляется. Во время действия команды «Сброс» счетный вход заблокирован. Команда «Сброс» подается на вход «Y2».

Имеется возможность изменения уставки во время подсчета импульсов. При изменении уставки в меньшую сторону и, если сосчитанное количество импульсов оказывается больше значения новой уставки, реле переключится на установленное время «t» согласно выбранной диаграмме работы и вернется в исходное состояние, при этом счетчик обнулится. В других случаях подсчет импульсов будет продолжен до установленного нового значения.

Напряжение питания АСDС24 В подается на клеммы «+А3» и «А2» (причем при постоянном напряжении плюс подается строго на +А3), а напряже­ние АС220 В – на клеммы «А1» и «А2». Сигналы внешнего сброса и входных импульсов можно сформировать путем замыкания и размыкания клемм «Y1», «Y2» с «А1»при напряжении питании АС220В или клемм «Y1», «Y2» и «+А3»при напряжении питания АСDС24 В. Схема подключения реле приведена на рис.3,4 и на шильдике, расположенном на корпусе реле. При изменении вре­менных интервалов и диаграммы работы реле необходимо выключить.

Будет интересно➡  Какие виды релейной защиты существуют?

Из технических характеристик:

  • Время готовности не более 0,15 с
  • Максимальная частота следования импульсов 25 Гц
  • Максимальное коммутируемое напряжение 400В
  • Максимальный коммутируемый ток при активной нагрузке 5А

Из схемы подключения видно, что входные импульсы – не что иное, как подача питающего напряжения на входы Y1 и Y2.

Промышленные системы

Принцип работы промышленных систем энергообеспечения остается неизменным. Приведем в качестве примера схему типового шкафа АВР.

Микропроцессорные бесконтакторные системы - фотография 8

Схема типового промышленного шкафа АВР

Обозначения:

  • AB1, АВ2 – трехполюсные устройства защиты;
  • S1, S2 – выключатели для ручного режима;
  • КМ1, КМ2 – контакторы;
  • РКФ – реле контроля фаз;
  • L1, L2 – сигнальные лампы для индикации режима;
  • км1.1, км2.1 км1.2, км2.2 и ркф1 – нормально-разомкнутые контакты.
  • км1.3, км2.3 и ркф2 – нормально-замкнутые контакты.

Приведенная схема АВР практически идентична, той, что была представлена на рисунке 6 (А). Единственное отличие заключается в том, что в последнем случае используется специальное реле контролирующее состояние каждой фазы. Если «пропадет» одна из них или произойдет перекос напряжений, то реле переключит нагрузку на другую линию, и восстановит исходный режим при стабилизации основного источника.

АВР в высоковольтных цепях

В электрических сетях с классом напряжения более 1кВ реализация АВР более сложная, но принцип работы системы практически не меняется. Ниже в качестве примера приведен упрощенный вариант схемы понижающей ТП 110,0/10,0 киловольт.

Автоматический ввод резерва (АВР) - фото 9

Упрощенная схема ТП 110/10 кВ

Из приведенной схемы видно, в ней нет резервных трансформаторов. Это говорит о том, что каждая из шин (Ш1 и Ш2) подключена к своему питающему трансформатору (T1, T2), каждый из которых может на определенное время стать резервным, приняв на себя дополнительную нагрузку. В штатном режиме секционный выключатель СВ10 разомкнут. АВР контролирует работу ТП через ТН1 Ш и ТН2 Ш.

Когда перестает поступать питание на Ш1, АВР выполняет отключение выключателя В10Т1 и производит включение секционного выключателя СВ10. В результате такого действия обе секции работают от одного трансформатора. При восстановлении источника система ввод резерва перекоммутирует систему в исходное состояние.

Основные выводы.

Даже самая простая схема АВР подразумевает наличие сразу нескольких компонентов. Неправильное расположение или подключение хотя бы одного из них может привести к печальным последствиям. И даже если все элементы задействованы правильно, их подключение и настройка занимают массу времени. При этом не стоит забывать и о том, что все контакторы, автоматические выключатели и прочие составляющие должны быть одного производителя! Только в этом случае можно гарантировать отлаженную и бесперебойную работу автоматического ввода резерва. В связи с этим невольно возникает вопрос — не лучше ли воспользоваться готовым модульным решением вместо того, чтобы самостоятельно пытаться собрать АВР из различных компонентов?

Готовое решение от CHINT – модульный АВР серии NZ7 с моторным приводом.

Типовая схема АВР на моноблоке NZ7

Специалисты CHINT уже все сделали за вас, остается только подключить два ввода и выход питания. Все до безумия просто, не правда ли?! Да, и вы сейчас сами в этом убедитесь. CHINT серии NZ7 представляет собой модульную конструкцию, от начала и до конца собранную на заводе. Это исключает сборку “кривыми руками”, все уже протестировано, настроено и полностью готово к работе. АВР от CHINT легко помещается в типовой шкаф.

Неоспоримое преимущество серии NZ7 заключается в двойной блокировке обоих вводов! Контакты прерывателей цепи обеспечивают электрическую блокировку, а моторный привод выполняет механическую блокировку. Таким образом, полностью исключается вероятность подключения к нагрузке сразу обоих источников питания. Более того, электродвигатель используется только один, а переключение вводов осуществляется его вращением вперед и назад. Это дает существенную экономию пространства, делая устройство компактным, практически бесшумным и с пониженным энергопотреблением.

Еще одной отличительной чертой АВР CHINT серии NZ7 можно назвать универсальность в выборе источника ввода. То есть питание можно осуществлять как от централизованной электрической сети, так и от любого генератора. При этом АВР от CHINT сможет самостоятельно управлять не только запуском, но и остановкой генератора. А регулировка задержки при переходе на резерв позволит избежать ложного срабатывания в случае кратковременного падения напряжения.

В общем готовый модульный АВР от CHINT позволит избежать мучительного поиска подходящей схемы АВР и длительного монтажа оборудования. Всего за полчаса автоматический ввод резерва будет смонтирован и станет обеспечивать бесперебойное снабжение электроэнергией заданного объекта. А все что для этого потребуется – просто подключить вводы и вывод!

Что такое автоматический ввод резерва и как работает АВР? Основные схемы АВР и их особенности.

Предыдущая
РазноеДелаем токопроводящий клей из подручных материалов
Следующая
РазноеЧто такое фаза в электричестве?
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять