Что такое полупроводниковые диоды и как они устроены

Что такое полупроводниковые диоды и как они устроены

 Полупроводниковый диод – особая радиодеталь, которая является прибором, осуществляющий электронно-дырочный переход. Существует два типа таких диодов – точечный и плоскостной. В первом типе такой переход осуществляется в месте соединения пластин друг с другом, произведенных из редкоземельных металлов – германий, кремний. В плоскостных, такой переход создается на контакте из германия или сурьмы.

В статье описано строение, использование, сфера применения полупроводников в современной электротехнике, из каких материалов они изготавливаются. В качестве дополнения, статья содержит два видеоматериала и подробную научную статью. Общими словами, такой тип диода является нелинейным компонентом, имеющий два вывода.

P-n-переход в полупроводнике.
P-n-переход в полупроводнике.

Конструкции и простейшие способы изготовления полупроводниковых диодов

Для получения простейшего точечного диода берут пластинку металла с прикреплённым к ней выводом и к ней приваривают кристалл полупроводника электронного типа проводимости. Этот кристалл называют базой диода. Затем берут металлическую иглу с присоединённым к ней выводом, изготавливаемую, например, из вольфрама, золота, бериллиевой бронзы, на которую нанесён легирующий материал, и её острый кончик упирают в кристалл базы диода так, чтобы игла была подпружинена. В качестве легирующего материала часто используют алюминий и индий. Все части будущего диода помещены в корпус, который, например, может быть маленьким стеклянным баллоном, из которого откачан воздух.

Далее осуществляют формовку, то есть местное нагревание участка между иглой и полупроводниковой пластиной для того, чтобы на небольшой площади их материалы друг в друга диффундировали. Для этого через диод в прямом и обратном направлениях пропускают короткие импульсы с силой тока около 1 А, что во много раз превышает максимальный постоянный ток изготавливаемого точечного диода. Материал акцепторной примеси, который находился на игле, и тот, из которого она состояла, диффундируют на небольшой почти полусферический участок в базу диода, образуя переход. Точечные диоды благодаря небольшой площади электронно-дырочного перехода обычно обладают малой ёмкостью, а, следовательно, могут работать на высокой частоте, не теряя свойства односторонней проводимости. Однако малая площадь перехода не позволяет пропускать через точечный диод большие прямые токи без разрушения компонента.

Полупроводниковый диод.
Полупроводниковый диод.

Для изготовления плоскостного диода берут базу диода электронного типа проводимости и кладут на неё полупроводниковую пластину, которая позже станет играть роль акцепторной примеси. Затем их нагревают примерно до 450 °C … 550 °C в вакууме, отчего материал акцепторной примеси диффундирует в базу будущего диода. Полученный электронно-дырочный переход будет обладать большой площадью и существенной ёмкостью. Основные характеристики полупроводниковых диодов перечислены в таблице ниже.

основные характеристики полупроводниковых диодов
Таблица основных характеристик полупроводниковых диодов

[stextbox id=’info’]Благодаря тому, что площадь плоскостного диода велика, через него можно пропускать весьма большой ток в прямом включении, однако наибольшая частота, на которой такой диод может сохранять работоспособность, будет низкой. В заключение нужно отметить, что существуют и многие другие конструкции, а также способы изготовления диодов.[/stextbox]

Некоторые основные параметры полупроводниковых диодов

К основным параметрам диодов относят:

  • максимально допустимый постоянный прямой ток, А;
  • максимально допустимый импульсный прямой ток, А;
  • максимально допустимое постоянное обратное напряжение, В;
  • максимально допустимое импульсное обратное напряжение, В;
  • обратный ток, протекающий через диод в обратном включении при приложенном к его выводам максимально допустимом постоянном напряжении, мкА;
  • статическое сопротивление диода в прямом включении, равное отношению падения напряжения на диоде в прямом включении к силе прямого тока, Ом;
  • статическое сопротивление диода в обратном включении, равное отношению величины обратного напряжения к силе обратного тока, МОм;
  • динамическое сопротивление диода в прямом включении, составляющее отношение изменения падающего не диоде постоянного напряжения в прямом включении к величине изменения силы прямого тока, Ом;
  • динамическое сопротивление диода в обратном включении, равное отношению изменения обратного напряжения к изменению величины обратного тока, Ом;
  • полная ёмкость запертого диода, пФ;
  • максимально допустимая частота протекающего по диоду переменного тока, Гц, и др.
Будет интересно➡  Что такое NTC термисторы

применяют для поддержания на неизменном уровне обратного постоянного напряжения, приложенного к запертому стабилитрону. При изучении пробоев электронно-дырочных переходов было отмечено, что при зенеровском и лавинном пробоях падающие на диодах обратные напряжения почти постоянны в широких диапазонах обратных токов. Зенеровский пробой присущ стабилитронам с низким напряжением пробоя, а лавинный пробой – стабилитронам с высоким напряжением пробоя. Так как во время указанных пробоев в электронно-дырочных переходах выделяется тепло, которое увеличивает температуру кристаллов, применяют полупроводники, обладающие высокой температурной стабильностью, при использовании которых обратный ток будет мал. С другой стороны, указанные пробои возникают при довольно низких обратных напряжениях, ввиду чего рассеиваемая мощность полупроводниковых стабилитронов не велика.

Стабилитроны изготавливают из кремния электронного типа проводимости, который легируют акцепторной примесью. Для этого в пластинку кремния обычно вплавляют алюминий, к материалам областей электронно-дырочного перехода подсоединяют выводы, всю систему помещают в корпус, который герметизируют. Корпуса стабилитронов обычно стеклянные, металлостеклянные или металлопластиковые.

Важным параметром стабилитронов выступает температурный коэффициент напряжения (ТКН) стабилизации, который отражён следующей формулой:

ТКН = (ΔUст / (ΔT • Uст)) • 100, %/град,

где ΔUст – наибольшее изменение напряжения стабилизации, В;

ΔT – наибольшее изменение температуры, град;

Uст – номинальное напряжение стабилизации при номинальном обратном токе, В.

Материал по теме: Как проверить варистор мультиметром.

Стабилитронам с лавинным пробоем характерно обладание положительным ТКН, т.е. при фиксированном обратном токе с ростом температуры полупроводникового кристалла обратное напряжение возрастает. Стабилитронам с зенеровским пробоем свойственно наличие отрицательного ТКН, т.е. при стабильном обратном токе с ростом температуры кристалла полупроводника обратное напряжение уменьшается.

[stextbox id=’info’]Вольтамперная характеристика стабилитрона в области прямого включения не имеет отличий от других диодов, а в области обратного включения лежит участок, на котором при значительном изменении обратного тока практически постоянно обратное напряжение. Это отражено на рис. 3.3, на котором изображена вольтамперная характеристика типового стабилитрона.[/stextbox]

Полупроводниковый диод – устройство

Существуют также точечные (высокочастотные) диоды, площадь их p – n перехода меньше 0,1 мм2. Такие диоды изготавливаются с помощью соединения металлической иглы с полупроводником. Применяются точечные диоды в аппаратуре сверхвысоких частот при значении тока 10-20 мА. Основные виды полупроводниковых диодов по функциональному назначению: выпрямительные, стабилитроны, импульсные, светодиоды, фотодиоды и т.д. Выпрямительными называют полупроводниковые диоды, предназначенные для преобразования переменного тока в постоянный.

Будет интересно➡  Как устроены многоцветные светодиоды

Такие диоды изготавливают методами сплавки и диффузии, для того чтобы создать большую площадь p-n перехода, так как через них протекают большие токи. Сам процесс выпрямления переменного тока заключается в свойстве диода хорошо проводить ток в одном направлении и практически не проводить его в другом. Ниже изображена схема простейшего однополупериодного выпрямителя. Работает он следующим образом: положительный полупериод напряжения Uвх, диод V пропускает практически без изменения, и напряжение Ur практически равно Uвх. Но в момент времени, когда полупериод напряжения отрицательный, диод включен в обратном направлении и все напряжение Uвх падает на диоде, а напряжение на резисторе практически равно нулю.

Полупроводниковые диоды.
Полупроводниковые диоды.

Использование

Полупроводниковый диод, двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие «П. д.» объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов. В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы.

[stextbox id=’info’]  Наиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода (р—n-перехода). Если к р—n-переходу диода (рис. 1) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то потенциальный барьер, соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р-области в n-область и электронов из n-области в р-область — течёт большой прямой ток (рис. 2). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р—n-переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3 приведена эквивалентная схема такого П. д.[/stextbox]

На резкой несимметричности вольтамперной характеристики (ВАХ) основана работа выпрямительных (силовых) диодов. Для выпрямительных устройств и др. сильноточных электрических цепей выпускаются выпрямительные П. д., имеющие допустимый выпрямленный ток Iв до 300 а и максимальное допустимое обратное напряжение U*обр от 20—30 в до 1—2 кв. П. д. аналогичного применения для слаботочных цепей имеют Iв < 0,1 а и называются универсальными.

При напряжениях, превышающих U*o6p, ток резко возрастает, и возникает необратимый (тепловой) пробой р—n-перехода, приводящий к выходу П. д. из строя. С целью повышения U*обр до нескольких десятков кв используют выпрямительные столбы, в которых несколько одинаковых выпрямительных П. д. соединены последовательно и смонтированы в общем пластмассовом корпусе. Инерционность выпрямительных диодов, обусловленная тем, что время жизни инжектированных дырок составляет > 10-5—10-4 сек, ограничивает частотный предел их применения (обычно областью частот 50—2000 гц)Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10-7—10-10 сек и создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами, главным образом в слаботочных сигнальных цепях ЭВМ.

Будет интересно➡  Диод 1n4007: характеристики, маркировка и datasheets

Что такое полупроводниковые диоды и как они устроены

Классификация

Полупроводниковые диоды, выпускаемые промышленностью, по их назначению можно разделить на следующие основные группы:

  • силовые,
  • опорные (стабилитроны),
  • фотодиоды,
  • импульсные,
  • высокочастотные,
  • параметрические.

Особый интерес представляют туннельные диоды. Маркировку полупроводниковых диодов, производство которых освоено после 1965 г., определяют четыре элемента. Первым элементом обозначения является буква, которая указывает материал используемого полупроводника: Г — германий; К — кремний; А — арсенид галлия. Если первым элементом обозначения является цифра (1 вместо Г, 2 вместо К и 3 вместо А), то это указывает, что приборы могут работать при повышенных температурах (например, приборы с кремниевым основанием, обозначенные цифрой 2, могут работать при температуре до 120°С).

Вторым элементом маркировки является буква, определяющая назначение прибора: А — сверхвысокочастотные диоды; Д — выпрямительные универсальные, импульсные диоды; В — выпрямительные столбы (последовательное соединение ряда диодов); С — стабилитроны; И — туннельные диоды; Ф—фотодиоды и т. д. Третий элемент маркировки (число) характеризует электрические свойства прибора. Выпрямительные низкочастотные диоды обозначаются цифрами от 101 до 399, универсальные — от 401 до 499, импульсные — от 501 до 599, усилительные туннельные диоды —от 101 до 199, генераторные туннельные диоды — от 201 до 299, переключающие туннельные диоды — от 301 до 399, стабилитроны — от 101 до 999.

Четвертый элемент маркировки (буква) определяет разновидность типа прибора из данной группы приборов. Например, 1Д505Б — германиевый импульсный диод, разновидность типа Б, или 3И302Б — арсенид-галлиевый туннельный диод, разновидность типа Б. Полупроводниковые диоды, разработка которых была закончена до 1965 г., обозначаются тремя элементами: первым элементом является буква Д; вторым элементом — число, указывающее диапазоны частот и исходный материал, из которого изготовлен диод; третий элемент определяет разновидность прибора.[stextbox id=’info’]Стабилитронами (опорными диодами) называются полупроводниковые диоды предназначенные для стабилизации постоянного напряжения. Для стабилизации напряжения в стабилитронах используют обратную ветвь вольт-амперной характеристики в области электрического пробоя, для этого их включают в обратном направлении. При изменении тока протекающего через стабилитрон от значения Iстmin до Iстmax напряжение на нем почти не изменяется.[/stextbox]

Полупроводниковый диод.
Полупроводниковый диод.

Стабилитроны стабилизируют напряжение от 3,5 В, а для стабилизации меньшего напряжения используют стабисторы. В стабисторах используют прямую ветвь вольт-амперной характеристики, поэтому их включают в прямом направлении. Импульсным называется диод, который предназначен для работы в импульсных схемах. В прямом направлении импульсный диод хорошо проводит электрический ток. При обратном включении такого диода, обратный ток в нем резко увеличивается, а через короткий промежуток времени исчезает. Таким образом получается электрический импульс.

Заключение

В данной статье представлены основные вопросы работы полупроводникового диода. Еще больше информации можно найти в статье Полупроводниковый диод. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.booksite.ru

hwww.elel.ru

www.electroandi.ru

www.moskatov.narod.ru

Предыдущая
ПолупроводникиКак работает диод с барьером Шоттки
Следующая
ПолупроводникиКак устроен туннельный диод?
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять