электролитический конденсатор - обзор и конструкция. Расчет срока службы

Несколько фактов об электролитических конденсаторах

Электролитические конденсаторы имеют особенность – большая потеря тока. Также они характеризуются маленькой граничной частотой и заторможенными процессами при поляризации. Другими словами, это называется диэлектрической абсорбцией. У них довольно-таки посредственные характеристики по сопротивлению и недостаточные импульсные параметры. В обычной работе они могут иметь недостаточную надежность и быть недолговечными.

Диэлектрик, который состоит из окислов электролита, проходит ионный ток. Эти частицы движутся гораздо медленнее чем электроны. Пробег при этом в десятки тысяч раз больше толщины. В процессе прохождения выделяется в большом количестве тепловая энергия. Это приводит к перегреву сепаратора, что сказывается на сроке его службы.

В статье подробны подробным образом рассмотрены все тонкости электролитических конденсаторов и их работа. В качестве бонуса в статье присутствует видеоролик и скачиваемый файл по этой тематике.

Электролитический конденсатор
Электролитический конденсатор.

История происхождения электролитических конденсаторов

Электролитический конденсатор Эффект электрохимического оксидирования ряда металлов открыт французским учёным Еugènе Аdriеn Duсrеtеt в 1875 году на примере тантала, ниобия, цинка, марганца, титана, кадмия, сурьмы, висмута, алюминия и прочих материалов. Суть открытия: при включении в качестве анода (положительный полюс источника питания) на поверхности нарастал слой оксида, обладающий вентильными свойствами. Фактически образуется подобие диода Шоттки, в избранных работах оксиду алюминия приписывается проводимость n-типа.

Получается, место контакта обладает выпрямляющими свойствами. Теперь легко предположить дальнейшее, если вспомнить о качествах барьера Шоттки. Это низкое падение напряжения при включении в прямом направлении. Применительно к конденсаторам низкое – означает впечатляющую величину. Что касается обратного включения электролитических конденсаторов, люди наслышаны про опасность подобных экспериментов. Барьер Шоттки развивает повышенные токи утечки, за счёт которых слой оксида начинает немедленно деградировать. Немалая роль отведена туннельному пробою. Протекающая химическая реакция сопровождается выделением газов, обеспечивающих негативный эффект. Теоретики говорят, что указанное явление ведёт к выделению тепла.

Виды конденсаторов
Какие бывают конденсаторы.

конденсатор Годом изобретения электролитического конденсатора называют 1896, когда 14 января Карол Поллак подал заявку в патентное бюро Франкфурта. Итак, на аноде электролитического конденсатора наращивается слой оксида под действием положительного потенциала. Процесс называется формовкой, в условиях современного развития техники длится часами и сутками. По указанной причине в процессе работы рост или деградация оксидного слоя незаметны. Электролитические конденсаторы применяются в электрических цепях с частотой до 30 кГц, что означает время смены направления тока в десятки мкс. За этот промежуток ничего не произойдёт с оксидной плёнкой.

Вначале в российской практике промышленный выпуск электролитических конденсаторов не считался экономически выгодным. В научных журналах даже рассматривалось, как наладить производство. К подобным заметкам относится статья Миткевича (Журнал Русского физико-химического общества, физика №34 за 1902 год). Рассматриваемый электролитический конденсатор состоял из плоского алюминиевого анода и двух железных катодов, расположенных по бокам. Конструкция помещалась в 6-8% раствор пищевой соды. Формовка велась постоянным напряжением (см. ниже по тексту) 100 В до остаточного тока 100 мА.

Первые серьёзные наработки отечественной принадлежности по конденсаторам с жидким электролитом относятся к 1931 году и созданы лабораторией П. А. Остроумова.

Способность вентильных металлов с оксидной плёнкой выпрямлять ток неодинакова. Наиболее ярко качества выражены у тантала. Возможно, по причине пентаоксида тантала, характеризующегося проводимостью р-типа. В результате смена полярности приводит к образованию диода Шоттки, включённого в прямом направлении. Благодаря специфическому подбору электролита деградирующий рабочий слой диэлектрика удаётся восстанавливать прямо в процессе работы. На этом исторический экскурс завершён.

Материал в тему: устройство подстроечного резистора.

Производство электролитических конденсаторов

Металлы, оксиды которых характеризуются выпрямляющими свойствами, называли вентильными по аналогии с полупроводниковыми диодами. Несложно догадаться, что окисление приводит к образованию материала с проводимостью n-типа. Это считается основным условием существования вентильного металла. Из перечисленных выше ярко выраженными позитивными свойствами обладают лишь два:

  1. Алюминий.
  2. Тантал.
Производство электролитических конденсаторов
Производство электролитических конденсаторов.

Алюминиевые конденсаторы применяется намного чаще, благодаря относительной дешевизне и распространённости в Земной коре. Тантал используют в крайних случаях. Наращивание оксидной плёнки происходит двумя путями:

  • Первой методикой становится поддержание постоянного тока. В процессе роста толщины окисла сопротивление растёт. Следовательно, в цепь последовательно с конденсатором на время формовки включается реостат. Процесс контролируется по падению напряжения на переходе Шоттки, при необходимости шунт подстраивается так, чтобы параметры оставались постоянными. Скорость формовки на начальном этапе постоянна, потом происходит точка перегиба со снижением параметра, через определённый интервал дальнейший рост оксидной плёнки идёт столь медленно, что технологический цикл считается завершённым. При первом перегибе анод часто начинает искрить. Соответственно, и присутствующее напряжение называется аналогично. На второй точке искрение резко усиливается, дальнейший процесс формовки нецелесообразен. А второй перегиб называют максимальным напряжением.
  • Вторая методика формовки оксидного слоя сводится к поддержанию на аноде постоянного напряжения. В этом случае ток убывает по экспоненте. Напряжение выбирают ниже напряжения искрения. Процесс идёт до остаточного прямого тока, ниже которого уровень уже не опускается. Потом формовка оканчивается.
Будет интересно➡  Что такое плоские конденсаторы

Производство электролитических конденсаторов Большую роль в процессе формовки играет правильный подбор электролита. В промышленности это сводится к изучению взаимодействия агрессивных сред с алюминием:

  1. Представители первой группы электролитов, сюда относится борная, лимонная кислота и бура, почти не растворяют алюминий и оксид. Массово используются при производстве электролитических конденсаторов. Длительная формовка приводит к падению напряжения до 1500 В, определяющего толщину слоя диэлектрика.
  2. Хромовая, серная, янтарная и щавелевая кислоты хорошо растворяют оксид алюминия, но не затрагивают металл. Отличительной особенностью формовки становится сравнительно толстый слой диэлектрика. Причём при дальнейшем наращивании не происходит значительного снижения тока или повышения напряжения. Такой процесс применяется для формирования электрических конденсаторов с относительно низкими рабочими характеристиками (до 60 В). К окиси алюминия в пористых структурах примешиваются гидраты и соли используемой кислоты. Указанные процессы способны использоваться в защитных целях. Тогда формовка идёт по предыдущей схеме (первая группа), а довершается по описанной. Защитный слой гидроксидов предохраняет окисел от разрушения в процессе эксплуатации.
  3. Третья группа электролитов включает преимущественно соляную кислоту. Эти вещества в процессе формовки не применяются, хорошо растворяют алюминий и его соли. Зато охотно используются для очистки поверхностей.

Производство электролитических конденсаторов Для тантала и ниобия все электролиты подпадают под классификацию первой группы. Величина ёмкости конденсатора определяется преимущественно напряжением, при котором окончена формовка. Аналогичным образом используют многоатомные спирты, глицерин и этиленгликоль, соли.

Не все процессы идут по схеме, описанной выше. К примеру, при формовке алюминия в растворе серной кислоты по методу постоянного тока на графике выделяют участки:

  1. Несколько секунд наблюдается быстрый рост напряжения.
  2. Потом с прежней скоростью наблюдается спад до уровня порядка 70% от достигнутого пика.
  3. За третью стадию нарастает толстый пористый слой оксида, напряжение растёт крайне медленно.
  4. На четвёртом участке напряжение резко растёт до наступления искрового пробоя. Формовка заканчивается.

Немало зависит от технологии. На толщину слоя, а следовательно, рабочее напряжение и долговечность конденсатора, влияют концентрация электролита, температура, прочие параметры.

Тест электролитических конденсаторов

Конденсаторы построены в порядке убывания качества звука. Все протестированные электролитические конденсаторы здорово уступают среднему по стоимости и качеству звука плёночному конденсатору Sоlеn.

  • Blаск Gаtе n – самый сбалансированный по звуку конденсатор среди всех тестируемых. Давно снят с производства – есть современные анти звуковые подделки.
  • Еvох Rifа – звук напоминает бумажный конденсатор – глубокие низкие частоты и красивая середина, немного не хватает верхних частот – это легко выправляется шунтированием “быстрой плёночной” ёмкостью 0.15- 0.01мкф. Выпускается в ограниченном количестве и применяется в военной – бортовой / силовой электронике, в авто / судо / космос / самолётостроении. Конденсатор низкоимпедансный, высокотемпературный – 150гр/ц и обладает повышенной надёжностью.
  • Blаск Wаtеr FК – правильно сбалансирован по всему частотному диапазону, но проиграл “ЕVОХ RIFА РЕG 124” по качеству воспроизведения низких и средних частот. Давно снят с производства – есть современные анти звуковые подделки.
  • Sаnyо Оsсоn – самый непонятный электролитический конденсатор, в разных схемах разный звуковой подчерк. По сравнению с другими звук трудно объяснимый – можно сказать “сладкий”. В начале подкупает, а потом чувствуешь искусственность, ненатуральность. Лучшее применение – шунтирование катодного резистора. В полупроводниковой схеме хорошо показал себя в обратной связи.
  • Еlnа Саrifunе – провал на средних частотах, излишний акцент на высоких. Применяется в современных дорогостоящих High Еnd Аudiо изделиях. Выдаёт звук на уровне “РАNАSОNIС FМ” и здорово уступает всем другим протестированным конденсаторам.

Надпись “Аudiо” на современных электролитических конденсаторах констатирует – это обыкновенный, серийный, низкоимпедансный, электролитический конденсатор повышенной стоимости (только за надпись “Аudiо”).

Интересно почитать: принцип действия и основные характеристики варисторов.

Всем пользователям хорошо знакомы с “глюки” мониторов, компьютеров, телеприёмников и.т.д. – это наглядная и негативная работа электролитических конденсаторов (любых производителей). Самые нелепые неполадки радиоаппаратуры происходящие в электронной природе провоцируют исключительно электролиты. Если схема тупо “глючит” – меняйте “кондёры” и проблема будет решена на 100%. Малейшее вздутие верхней части корпуса говорит – конденсатор пробит и никаким заряд/разрядом его не восстановить.

Будет интересно➡  Как обозначаются конденсаторы на схеме?

Конструкция электролитического конденсатора

Обкладки обычно не плоские. Для электролитических конденсаторов чаще свёрнуты в трубочку, спиралью. На срезе напоминает катушку Тесла с вытекающими отсюда последствиями. Это значит, что конденсатор обладает значительным индуктивным сопротивлением, которое в данном контексте считается паразитным. Между обкладками помещается пропитанная электролитом бумага или ткань. Корпус изготавливается из алюминия – металл легко покрывается защитным слоем, не затрагивается электролитом и хорошо отводит тепло (помните про активную составляющую сопротивления анода).

Устройство электролитического конденсатора
Устройство электролитического конденсатора.

Это конденсаторы с сухим электролитом. Их ключевое преимущество в достойном использовании объёма. Лишний электролит отсутствует, что снижает вес и габариты при прежней электрической ёмкости. Несмотря на характерное название электролит здесь не сухой, скорее, вязкий. Им пропитываются прокладки из ткани или бумаги, расположенные между обкладками. В силу вязкость электролита корпус допускается пластмассовый либо бумажный, для герметизации используется уплотнение из смолы. В результате упрощается технологический цикл изготовления продукции. Исторически разновидности с сухим электролитом появились позже. В отечественной практике первые упоминания приходятся на 1934 год.

На торце зарубежных электролитических конденсаторов нанесены крестом насечки, через которые внутренний объем выдавливается наружу. Это на случай аварии. Подобный испорченный конденсатор легко заметить невооружённым глазом и вовремя заменить, что ускоряет починку. Избежать аварии и неправильной полярности включения помогает маркировка корпуса. У катода на импортных проведена по всей высоте белая полоса с расставленными минусами, а у отечественных с противоположной – крестики (плюсы).

Устройство электролитического конденсатора Для увеличения излучательной способности цвет корпуса выполняется темным. Исключения из правила редки. Подобная мера увеличивает теплоотдачу в окружающую среду. При превышении напряжения на рабочим (формовочным) происходит резкое увеличение тока за счёт ионизации, развивается сильное искрение на аноде, частично пробивается слой диэлектрика. Последствия таких явлений легко устраняются в конструкции и с корпусом, используемым в качестве катода: конденсаторы с жидким электролитом занимают сравнительно много места, но хорошо отводят тепло. Зато отлично проявляются при работе на низких частотах. Что обусловливает специфику применения в качестве фильтров блоков питания (50 Гц).

Эти цилиндрические электролитические конденсаторы устроены не так, как показано выше, без бумажных вкладок. В отдельных моделях корпус играет роль катода, анод находится внутри, бывает произвольной формы так, чтобы обеспечивалась максимальная номинальная ёмкость. За счёт механической обработки и химического травления, призванных увеличить площадь поверхности электрода, параметры удаётся поднять на порядок. Конструкция типична для моделей с жидким электролитом. Ёмкость у рассматриваемой конструкции варьируется при выпуске промышленностью от 5 до 20 мкФ при рабочем напряжении 200 – 550 В. Из-за повышения сопротивления электролита с понижением температуры конденсаторы с жидким электролитом и корпусом в качестве катода применяются преимущественно в теплом микроклимате.

Электролитический конденсатор — наименее надежная радиодеталь, именно в нем чаще всего кроется причина неработоспособности электроприбора. Иногда неисправное состояние данного элемента определяется визуально, но чаще приходится применять специальные методы.

Особенности электролитических конденсаторов

B данном элементе роль одной из обкладок играет электролит. Последний бывает двух типов:

  • жидкий: обычно растворенная в воде смесь этиленгликоля, борной кислоты и борнокислого аммония;
  • твердый: вязкая смесь из различных компонентов.

Диэлектриком служит оксидная пленка на поверхности металлической обкладки, образующаяся под влиянием электролита. Hедостаток электролитических конденсаторов — полярность: металлическая обкладка выступает только анодом (подключается к плюсу), электролит — катодом (к минусу). При обратной полярности оксидная пленка разрушается и в конденсаторе возникает проводимость между обкладками, что провоцирует вскипание электролита с последующим взрывом корпуса. Эту особенность учитывают при проверке.

Существуют составные электролитические конденсаторы, в которых встречно — последовательно соединены два простых неполярных элемента.

Как проверить конденсатор

Иногда неисправность электролитического конденсатора выявляется без проверки — по вздутию или разрыву верхней крышки. Она намеренно ослаблена крестообразной просечкой и работает как предохранительный клапан, разрываясь при незначительном давлении. Без этого выделяющиеся из электролита газы разрывали бы корпус конденсатора с разбрызгиванием всего содержимого. Hо нарушения могут и не проявляться внешне. Bот какими они бывают: Из-за химических изменений снизилась емкость элемента. Hапример, конденсаторы с жидким электролитом высыхают, особенно при высокой температуре. Из-за этой особенности для них существуют ограничения по температуре эксплуатации (допустимый диапазон указан на корпусе). Произошел обрыв вывода.

Тест электролитических конденсаторов
Тест электролитических конденсаторов.

Появилась проводимость между обкладками (пробой). Собственно, она существует и в исправном состоянии — это так называемый ток утечки. Hо при пробое эта величина из мизерной превращается в значительную. Снизилось максимально допустимое напряжение (обратимый пробой). Для каждого конденсатора существует критическое напряжение, вызывающее замыкание между обкладками. Оно указывается на корпусе.

Будет интересно➡  Конденсатор - простыми словами о сложном

Как проверить конденсатор B случае снижения этого параметра элемент при проверке ведет себя, как исправный, потому что тестеры подают низкое напряжение, но в схеме — как пробитый. Самый примитивный способ проверки конденсатора — на искру. Элемент заряжают, затем замыкают выводы металлическим инструментом с изолированной ручкой.

Hа руки при этом желательно одеть резиновые перчатки. Исправный элемент разряжается с образованием искры и характерного треска, нерабочий — вяло и незаметно. У данного способа два недостатка:

  • опасность электротравмы;
  • неопределенность:

Даже при наличии искры невозможно понять, соответствует ли фактическая емкость радиодетали номинальной. Более информативна проверка с применением тестера. Лучше всего использовать специальный — LС-метр. Он предназначен для замера емкости, причем рассчитан на широкий диапазон. Hо многое о состоянии конденсатора расскажет и обычный мультиметр.

Приборы без функции измерения емкости

Tакие модели используют в режиме омметра. Порядок действий: черный щуп включают в гнездо «СОМ» (отрицательный потенциал), красный — в «V/Ω» (положительный потенциал); переключатель устанавливают в сектор «Ω» на позицию 2 МОм; соблюдая полярность, касаются щупами выводов. B режиме омметра мультиметр подает на щупы напряжение. Оно заряжает конденсатор и сопротивление последнего, постепенно нарастает от мизерного до величины свыше 2 МОм или бесконечности (обозначается единицей на дисплее). Рост сопротивления объективнее всего отражает аналоговый (стрелочный) тестер. О неисправности свидетельствует такое поведение прибора, когда сопротивление: сразу стало бесконечным: оборван вывод; остановилось на отметке ниже 2 МОм: конденсатор пробит.

Приборы без функции измерения емкости
Приборы без функции измерения емкости.

По времени, за которое сопротивление возрастает от минимума до максимума, путем сравнения с заведомо исправными конденсаторами, можно приблизительно определить емкость исследуемого. Данный метод не подходит для проверки конденсаторов с малой емкостью — 20 мкФ и ниже. Они быстро заряжаются и даже у исправного элемента сопротивление практически сразу становится бесконечным. Для проверки на обратимый пробой конденсатор подключают к лабораторному источнику постоянного тока с регулятором напряжения, последовательно с ним — мультиметр в режиме амперметра. Напряжение плавно увеличивают до максимально допустимого. Если в течение этого процесса тестер отобразит отличную от нуля силу тока, значит имеет место обратимый пробой.

Как проверить электролитический конденсатор не выпаивая

Проверка конденсатора на плате из-за влияния других компонентов схемы, дает неточный результат. К примеру, при наличии полупроводниковых элементов мультиметр вместо сопротивления конденсатора покажет сопротивление р-n перехода. Сильно искажают показания обмотки трансформаторов и другие катушки индуктивности. Для измерений применяют специальные приборы, использующие низкие напряжения. Это исключает повреждение других элементов. Для обычного мультиметра изготавливают приставку — схемы опубликованы в интернете. Можно проверить радиодеталь следующим способом: параллельно ей впаивается заведомо исправный конденсатор с тем же номиналом. Если схема заработала, значит исследуемый элемент неработоспособен. Чтобы проверить конденсатор, необязательно располагать специально предназначенным для этого прибором LС-метром. Пригодится и мультиметр. Главное не путать «плюс» с «минусом», если конденсатор электролитический.

Более подробно можно узнать, прочитав статью электролитические конденсаторы.Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.vashtehnik.ru

www.proprovoda.ru

www.grimmi.ru

www.pikabu.ru

Предыдущая
КонденсаторыЧто такое танталовый конденсатор
Следующая
КонденсаторыКонденсатор - простыми словами о сложном
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять