Что такое переменный конденсатор

Что такое переменный конденсатор

Предназначение конденсатора – это использование их в электронных схемах с постоянным током. Здесь они играют роль фильтрующих емкостей. Также нужны они в транзисторных каскадах и стабилизаторах. Для работы в схемах с переменным током были созданы неполярные конденсаторы. В этом случае нужна стабильность рабочих параметров. Они должны иметь высокую точность, маленький температурный коэффициент ТКЕ. Подобные конденсаторы устанавливаются в колебательных контурах практически любой радиоаппаратуры.

В данной статье описаны все особенности конденсаторов переменного тока, а также в качестве бонуса приведены видеоролик и скачиваемая статья по рассматриваемой теме.

Конденсатор переменного тока
Конденсатор переменного тока.

Основные величины и единицы измерения

конденсаторы переменного тока Существует несколько основных величин, определяющих конденсатор. Одна из них — это его емкость (латинская буква С), а вторая – рабочее напряжение (латинская U). Электроемкость (или же просто емкость) в системе СИ измеряется в фарадах (Ф). Причем как единица емкости 1 фарад – это очень много – на практике почти не применяется. Например, электрический заряд планеты Земля составляет всего 710 микрофарад. Поэтому в большинстве случаев из-меряется в производных от фарада величинах: в пикофарадах (пФ) при очень маленьком значении емкости (1 пФ=1/10 6 мкФ), в микрофарадах (мкФ) при достаточно большом ее значении (1 мкФ = 1/10 6 Ф).

Для того чтобы рассчитать электроемкость, необходимо разделить величину заряда, накопленного между обкладками, на модуль разницы потенциалов между ними (напряжение на конденсаторе). Заряд конденсатора в данном случае – это заряд, накапливающийся на одной из обкладок рассматриваемого устройства. На 2-х проводниках устройства они одинаковы по модулю, но отличаются по знаку, поэтому сумма их всегда равняется нулю. Заряд конденсатора измеряется в кулонах (Кл), а обозначается буквой Q.

Интересно почитать: принцип действия и основные характеристики варисторов.

Как они проводят переменный ток

конденсатор Чтобы убедиться в этом воочию, достаточно собрать несложную схему. Сначала надо включить лампу через конденсаторы C1 и C2, соединенные параллельно. Лампа будет светиться, но не очень ярко. Если теперь добавить еще конденсатор C3, то свечение лампы заметно увеличится, что говорит о том, что конденсаторы оказывают сопротивлению прохождению переменного тока. Причем, параллельное соединение, т.е. увеличение емкости, это сопротивление снижает.

Отсюда вывод: чем больше емкость, тем меньше сопротивление конденсатора прохождению переменного тока. Это сопротивление называется емкостным и в формулах обозначается как Xc. Еще Xc зависит от частоты тока, чем она выше, тем меньше Xc. Об этом будет сказано несколько позже.

Другой опыт можно проделать используя счетчик электроэнергии, предварительно отключив все потребители. Для этого надо соединить параллельно три конденсатора по 1мкФ и просто включить их в розетку. Конечно, при этом надо быть предельно осторожным, или даже припаять к конденсаторам стандартную штепсельную вилку. Рабочее напряжение конденсаторов должно быть не менее 400В.

[stextbox id=’info’]После этого подключения достаточно просто понаблюдать за счетчиком, чтобы убедиться, что он стоит на месте, хотя по расчетам такой конденсатор эквивалентен по сопротивлению лампе накаливания мощностью около 50Вт.[/stextbox]

Будет интересно➡  Чем отличается пусковой конденсатор от рабочего?

Конденсатор в цепи переменного тока

самодельный конденсатор Соберем цепь с конденсатором, в которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю. В первую четверть периода напряжение на зажимах генератора будет возрастать, начиная от нуля, и конденсатор начнет заряжаться. В цепи появится ток, однако в первый момент заряда конденсатора, несмотря на то, что напряжение на его пластинах только что появилось и еще очень мало, ток в цепи (ток заряда) будет наибольшим.

По мере же увеличения заряда конденсатора ток в цепи убывает и доходит до нуля в момент, когда конденсатор полностью зарядится. При этом напряжение на пластинах конденсатора, строго следуя за напряжением генератора, становится к этому моменту максимальным, но обратного знака, т. е. направлено навстречу напряжению генератора. Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

Материал в тему: описание и область применения подстроечного резистора.

Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда ,один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится. Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

переменный конденсатор С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

Будет интересно➡  Что такое плоские конденсаторы

[stextbox id=’info’]В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.[/stextbox]

Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим заряды и разряды конденсатора сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит переменный ток.

Конденсатор в цепи

Рассматриваемый прибор в цепи постоянного тока проводит ток только в момент включения его в сеть (при этом происходит заряд или перезаряд устройства до напряжения источника). Как только конденсатор полностью заряжается, ток через него не идет. При включении устройства в цепь с процессы разрядки и зарядки его чередуются друг с другом. Период их чередования равен приложенного синусоидального напряжения.

Характеристики конденсаторов

Конденсатор в зависимости от состояния электролита и материала, из которого он состоит, может быть сухим, жидкостным, оксидно-полупроводниковым, оксидно-металлическим. Жидкостные конденсаторы хорошо охлаждаются, эти устройства могут работать при значительных нагрузках и обладают таким важным свойством, как самовосстановление диэлектрика при пробое. У рассматриваемых электрических устройств сухого типа достаточно простая конструкция, немного меньше потери напряжения и ток утечки. На данный момент именно сухие приборы пользуются наибольшей популярностью. Основным достоинством электролитных конденсаторов являются дешевизна, компактные габариты и большая электроемкость. Оксидные аналоги – полярные (неверное подключение приводит к пробою).

Как подключается

обозначение конденсаторов Подключение конденсатора в цепь с постоянным током происходит следующим образом: плюс (анод) источника тока соединяется с электродом, который покрыт окисной пленкой. В случае несоблюдения этого требования может произойти пробой диэлектрика. Именно по этой причине жидкостные конденсаторы нужно подключать в цепь с переменным источником тока, соединяя встречно последовательно две одинаковые секции. Или нанести оксидный слой на оба электрода. Таким образом, получается неполярный электроприбор, работающий в сетях как с постоянным, так и с Но и в том и в другом случаях результирующая емкость становится в два раза меньше. Униполярные электрические конденсаторы обладают значительными размерами, зато могут включаться в цепи с переменным током. Маркировка производится цветом и цифровым кодом. Цифровая маркировка емкости конденсаторов приведена ниже.

Цифровая маркировка емкости конденсаторов
Таблица цифровой маркировки емкости конденсаторов.

Для чего нужен конденсатор

Конденсаторы широко используются во всех электронных и радиотехнических схемах. Они вместе с транзисторами и резисторами являются основой радиотехники. Применение конденсаторов в электротехнических устройствах и бытовой технике:

  • Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки). Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.
  • Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п.
  • Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью. Но к сожалению , конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.
  • Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт.
  • В промышленности конденсаторные установки применяются для компенсации реактивной энергии.
Будет интересно➡  Как обозначаются конденсаторы на схеме?
Конденсатор переменного тока
Конденсатор переменного тока.

Основное применение конденсаторов

конденсатор Слово «конденсатор» можно услышать от работников различных промышленных предприятий и проектных институтов. Разобравшись с принципом работы, характеристиками и физическими процессами, выясним, зачем нужны конденсаторы, например, в системах энергоснабжения? В этих системах батареи широко применяют при строительстве и реконструкции на промышленных предприятиях для компенсации реактивной мощности КРМ (разгрузки сети от нежелательных ее перетоков), что позволяет уменьшить расходы на электроэнергию, сэкономить на кабельной продукции и доставить потребителю электроэнергию лучшего качества. Оптимальный выбор мощности, способа и места подключения источников (Q) в сетях электроэнергетических систем (ЭЭС) оказывает существенное влияние на экономические и технические показатели эффективности работы ЭЭС. Существуют два типа КРМ: поперечная и продольная.

При поперечной компенсации батареи конденсаторов подключаются на шины подстанции параллельно нагрузке и называются шунтовыми (ШБК). При продольной компенсации батареи включают в рассечку ЛЭП и называют УПК (устройства продольной компенсации). Батареи состоят из отдельных приборов, которые могут соединяться различными способами: конденсаторы последовательного подключения или параллельного. При увеличении количества последовательно включенных устройств увеличивается напряжение. УПК также используются для выравнивания нагрузок по фазам, повышения производительности и эффективности дуговых и рудотермических печей (при включении УПК через специальные трансформаторы).

Более подробно о работе переменных конденсаторов можно узнать, прочитав статью справочник по конденсаторам. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.electricalschool.info

www.sxemotehnika.ru

www.jelektro.ru

www.sibay-rb.ru

www.alprof.info

Следующая
КонденсаторыЧто такое танталовый конденсатор
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Добавить комментарий

два × пять =

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять