Формула расчета частоты вращений. Синхронные и асинхронные электромашины

От чего зависят обороты однофазного асинхронного двигателя

Содержание:

Виды электродвигателей

Наибольшее распространение имеет трехфазный асинхронный электродвигатель. Электродвигатели постоянного тока и синхронные применяются редко.

Большинство электрифицированных машин нуждаются в приводе мощностью от 0,1 до 10 кВт, значительно меньшая часть — в приводе мощностью в несколько десятков кВт. Как правило, для привода рабочих машин используются короткозамкнутые трехфазные электродвигатели. По сравнению с фазным такой электродвигатель имеет более простую конструкцию, меньшую стоимость, большую надежность в эксплуатации и простоту в обслуживании, несколько более высокие эксплутационные показатели (коэффициент мощности и коэффициент полезного действия), а при автоматическом управлении требует простой аппаратуры. Недостаток короткозамкнутых электродвигателей — относительно большой пусковой ток. При соизмеримости мощностей трансформаторной подстанции и электродвигателя его пуск сопровождается заметным снижением напряжения сети, что усложняет как пуск самого двигателя, так и работу соседних токоприемников.

Наряду с трехфазными асинхронными короткозамкнутыми электродвигателями основного исполнения применяются также отдельные модификации этих двигателей: с повышенным скольжением, многоскоростные, с фазным ротором, с массивным ротором и т. д. Электродвигатели с фазным ротором применяют и в тех случаях, когда мощность питающей сети недостаточна для пуска двигателя с короткозамкнутым ротором.

Механические характеристики асинхронных электродвигателей с короткозамкнутым ротором в значительной мере зависят от формы и размеров пазов ротора, а также от способа выполнения роторной обмотки. По этим признакам

различают электродвигатели с нормальным ротором (нормальная беличья клетка), с глубоким пазом и с двумя клетками на роторе. Конструкция ротора короткозамкнутых асинхронных электродвигателей общего назначения мощностью свыше 500 Вт предопределяет явление вытеснения тока в обмотке, эквивалентно увеличению ее активного сопротивления. Поэтому, а также вследствие насыщения магнитных путей потоков рассеивания такие электродвигатели (в первую очередь обмотки ротора) обладают переменными параметрами и аналитические выражения их механических характеристик усложняются. Увеличение активного сопротивления ротора в период пуска вызывает увеличение начального пускового момента при некотором снижении силы начального пускового тока

Основные характеристики электродвигателей

Номинальный режим электродвигателя соответствует данным, указанным на его щитке (паспорте). В этом режиме двигатель должен удовлетворять требованиям, установленным ГОСТом.

Существует восемь различных режимов работы, из них основными можно считать:

продолжительный номинальный режим;

кратковременный номинальный режим с длительностью рабочего периода 10, 30 и 90 мин;

· повторно-кратковременный номинальный режим с продолжительностью включения (ПВ) 15, 25, 40, 60%, с продолжительностью одного цикла не более 10 мин.

Номинальной мощностью Рн электродвигателя называется указанная на щитке полезная механическая мощность на валу при номинальном режиме работы. Номинальная мощность выражается в Вт или кВт.Номинальная частота вращения nн вала электродвигателя называется указанное на щитке число оборотов в минуту, соответствующее номинальному режиму.

Номинальный момент вращения — момент, развиваемый двигателем на валу при номинальной мощности и номинальной частоте вращения:

где

Мн — номинальный момент вращения, Н·м (1 кгс·м = 9,81 Н·м ≈ 10 Н·м);

Рн — номинальная мощность, кВт;

nн — номинальная частота вращения, об/мин.

Номинальный к.п.д. hн электродвигателя — отношение его номинальной

мощности к мощности, потребляемой им из сети при номинальном напряжении:

где:

Рн — номинальная мощность, кВт

Uн — номинальное (линейное) напряжение, В;

Iн — номинальная сила тока, А

cosφн — номинальный коэффициент мощности.

Номинальной силой тока электродвигателя называется сила тока, соответствующая номинальному режиму. Действительное значение силы тока при номинальном режиме может отличаться от указанного на щитке электродвигателя в пределах установленных допусков для к.п.д. и коэффициента мощности.

Максимальный вращающий момент электродвигателя — наибольший вращающий момент, развиваемый при рабочем соединении обмоток и постепенном повышении момента сопротивления на валу сверх номинального при условии, что напряжение на зажимах двигателя и частота переменного тока остаются неизменными и равными номинальным значениям.
Начальный пусковой вращающий момент электродвигателя — момент вращения его при неподвижном роторе, номинальных значениях напряжения и частоты переменного тока и рабочем соединении обмоток.

Минимальным вращающим моментом электродвигателя в процессе пуска называется наименьший вращающий момент, развиваемый двигателем при рабочем соединении обмоток и частоте вращения в пределах от нуля до значения, соответствующего максимальному вращающему моменту (напряжение на зажимах двигателя и частота переменного тока должны оставаться неизменными и равными их номинальным значениям).

Номинальная частота вращения вала электродвигателя является следующим за мощностью параметром, от которого в значительной мере зависят конструктивное оформление, габариты, стоимость и экономичность работы электропривода. Наиболее приемлемыми в диапазоне мощностей от 0,6 до 100 кВт являются частоты вращения 3000, 1500 и 1000 об/мин (синхронные). Электродвигатели с частотой вращения 750 об/мин (восьмиполюсные) малых мощностей имеют низкие энергетические показатели. При одинаковой мощности электродвигатели с более высокой частотой вращения имеют более высокие значения к.п.д. и cosφ, а также меньшие размеры и массу, что определяет их меньшую стоимость.

Сила тока холостого хода I0 в значительной мере определяется силой намагничивающего тока I0Р. приближенно можно считать I0 = I0P . Для машин

основного исполнения относительное значение силы тока холостого хода
I0 = (0,2—0,6)Iн (оно тем больше, чем меньше номинальная частота вращения и мощность электродвигателя).

Если известны номинальный коэффициент мощности и кратность максимального момента mк, то сила тока холостого хода при номинальном напряжении

I1н — ток статора при номинальной нагрузке, А.

При номинальных напряжениях и частоте переменного тока сила тока холостого хода от изменения нагрузки практически не зависит. Определить из опыта I0 нетрудно, если электродвигатель не соединен с рабочей машиной. По значению I0 можно в известной мере судить о состоянии электродвигателя, в частности после его ремонта.
К.п.д. электродвигателя при различной степени нагрузки
с достаточной для практических расчетов точностью определяют по формуле:

— коэффициент потерь, представляющих собой отношение постоянных потерь к переменным при номинальной нагрузке.

К постоянным потерям, практически не зависящим от нагрузки, относятся механические потери, и потери в стали, к переменным — электрические потери в обмотках, зависящие от силы тока нагрузки, и добавочные потери — не учтенные ранее перечисленными видами потерь. Постоянные потери в значительной степени зависят от числа полюсов двигателя и его мощности.

Переменные потери при номинальной нагрузке определяют с помощью каталожных данных

где:

Рн — номинальная мощность двигателя;

ΔРн — полные потери двигателя при полной нагрузке;

ΔР0 — постоянные потери (Δm0= Δmмех + Δm–).

Таблица 2.2. Усредненное значение постоянных потерь мощности, рекомендуемое для практических расчетов

Число полюсовНоминальная мощность Рн, кВтМеханические потери DРмех, %РнПотери в стали DРс, %Рн
в пределахрекомендуемые при расчетах для электродвигателей типовв пределахрекомендуемые при расчетах
А2АО2
210

40

0,7—4,90,93,43,1—3,9

2,0—2,9

3,5

2,5

410

40

0,4—1,40,50,93,0—5,6

2,2—3,4

4,3

2,8

610

40

0,32—0,820,440,63,0—6,0

2,1—3,0

4,5

2,6

810

40

0,25—0,620,30,453,5—4,8

2,0—3,3

4,2

2,6

 

При наличии кривой к.п.д. в функции нагрузки касательная к этой кривой в начальной точке отсекает на горизонтали, проведенной на уровне η + 1, отрезок р0, равный в масштабе абсцисс постоянным потерям (рис. 2).

Коэффициент мощности cosφ1 существенно зависит от реактивной мощности, потребляемой из сети, и степени нагрузки двигателя. Реактивная мощность, потребляемая из сети,
где:

Q’p, q1, q2— реактивная мощность, расходуемая на образование соответственно основного магнитного поля двигателя, полей рассеивания обмоток статора и ротора. Основную часть реактивной мощности составляет мощность Q’p которая из-за наличия воздушного зазора значительно больше, чем в трансформаторах, и определяет относительно большое значение намагничивающего тока: I0 = (0,2—0,6)Iн .

Обычно у трехфазных асинхронных электродвигателей при номинальной нагрузке cosφ1н= 0,7—0,92. Большие значения коэффициента мощности относятся к мощным двигателям с числом полюсов 2p = 2 и 4. При уменьшении нагрузки cosφ1 уменьшается до значения cosφ10 ≈ 0,09—0,18 при холостом ходе. Средние значения cosφ и к.п.д. трехфазных электродвигателей даны в таблице 2.3.

в зависимости от нагрузки на валу

Таблица 2.3. Практические пределы значений к.п.д. и cos j трехфазных асинхронных двигателей основного исполнения

Мощность, кВтСинхронная частота вращения, об/минК.п.д.cosφ
0,8—1,130000,78—0,7950,86—0,87
0,6—1,115000,72—0,780,76—0,8
0,4—1,110000,68—0,760,65—73
1,5—7,530000,805—0,870,88—0,89
15000,80—0,8850,81—0,87
10000,79—0,870,75—0,82
2,2—7,57500,795—0,8650,69—0,81
10—2230000,88—0,890,88—0,9
15000,885—0,90,87—0,9
10000,87—0,90,86—0,9
7500,87—0,90,79—0,84
30—5530000,89—0,910,9—0,92
15000,905—0,9250,88—0,92
10000,9—0,9250,88—0,92
7500,9—0,9250,84—0,9

 

Для к.п.д. и коэффициента мощности допускаются следующие отклонения: к.п.д. (η) машин мощностью до 50 кВт включительно: –0,15 (1 – η);

к.п.д. машин мощностью свыше 50 кВт: –0,1(1 – η);

коэффициента мощности (cosφ):
но не менее 0,02 и не более 0,07 по абсолютному значению.

Скольжение при номинальной нагрузке трехфазных асинхронных электродвигателей основного исполнения обычно составляет от 1,5 до 6,6%. Большие значения скольжения относятся к меньшим значениям мощности двигателя (табл. 2.4). Требование малой Sн связано с получением высокого к.п.д. и приводит к необходимости иметь малое активное сопротивление обмотки ротора.
Таблица 2.4. Частота вращения ротора трехфазного асинхронного электродвигателя основного исполнения при номинальной нагрузке и стандартной частоте тока 50 Гц

Число полюсовЧастота вращения поля статора (синхронная) nc, об/минЧастота вращения вала ротора nн
230002815—2940
415001400—1470
61000930—985
8750720—740
10600580—585

 

Примечания:

1. В таблице приведены данные для двигателей мощностью от 1,1 до 100 кВт.

2. В серии А2 10-полюсные электродвигатели на синхронную частоту вращения 600 об/мин выпускаются с наименьшей мощностью 17 кВт.
3. Двигатели на 12 полюсов и более выполняют преимущественно мощностью выше 100 кВт.

При номинальном значении напряжения и частоты переменного тока скольжение с изменением нагрузки в пределах от холостого хода до номинальной практически изменяется пропорционально нагрузке (для двигателей, имеющих кратность максимального момента mк ≥ 1,6):

S = bSн,

где:

b — степень загрузки.

При работе электродвигателя с пульсирующей или ударной нагрузкой для

лучшего использования маховых масс целесообразно увеличивать номинальное скольжение. У электродвигателей с повышенным скольжением серии А2 и АО2 номинальное скольжение в зависимости от типоразмера и частоты вращения находится в пределах 6,6—16%.

Критическое скольжение Sк — величина скольжения, соответствующая максимальному моменту электродвигателя. Может быть определена по каталожным данным из выражений:

где:

mк — кратность максимального момента;

mn — кратность начального пускового момента;

Sн — относительное значение номинального скольжения.

Приближенно критическое скольжение

При значениях:

1,61,82,02,53,0
Sк/Sн1,853,333,734,85,8

 

В среднем можно считать Sк = (4—5)Sн.
Начальная скорость нарастания температуры Δτ, °С/с, обмотки статора короткозамкнутых электродвигателей при заторможенном роторе и номинальном напряжении (без учета отдачи тепла)

где:

ki — кратность начального пускового тока по отношению к номинальному; γ1 — плотность тока (А/мм2) в обмотке статора при номинальной нагрузке; N — коэффициент, равный (для медной обмотки) 200, если процесс нарастания температуры начинается при холодном состоянии двигателя, и 145 — при нагретом состоянии двигателя.

При средних величинах ki = 6—7 и g1 = 5—6 А/мм2 интенсивность нарастания температуры (в нагретом состоянии двигателя) составляет:

Δτ = 5,45—10,6°С/с.

Для трехфазных асинхронных двигателей серии А2 и АО2 при пуске температура обмоток статора нарастает со скоростью не более 7°С/с. В таком случае пребывание двигателя под пусковым током возможно без вреда для изоляции в течение 10—15 с.

Напряжение трехфазных асинхронных электродвигателей должно соответствовать стандартам на данный вид электрической машины. Электродвигатели серии А2 и АО2 мощностью до 100 кВт выпускаются на напряжение 220 Δ, 380 Y и 500 Y В по требованию.

Трехфазные двигатели сельскохозяйственной серии АО2-СХ мощностью 2,2—10 кВт выпускают на 380 Y и мощностью 13—30 кВт при 1500 об/мин — на 380 Δ В.

Трехфазные двигатели серии 4А мощностью 0,12—0,37 кВт рассчитаны на напряжение 220 Δ, 380 Y, а мощностью 0,55—110 кВт — на 220 Δ, 380 Y и 380 Δ, 660 Y В.

Трехфазные асинхронные электродвигатели серии Д мощностью от 0,25 до 4 кВт основного исполнения поставляют для напряжений 220 Δ, 380 Y В.

На напряжение 380 В изготавливаются асинхронные двигатели мощностью до 400 кВт, поэтому применение напряжений 3 и 6 кВ необходимо только для более мощных двигателей.

Строение асинхронного двигателя

Для того, чтобы разобраться в теории работы двигателя, нам надо рассмотреть из чего же он состоит.

  1. Крышка клеммной коробки.
  2. Клеммная коробка.
  3. Стяжные болты корпуса.
  4. Вал ротора.
  5. Передняя крышка корпуса.
  6. Опорная плита корпуса.
  7. Корпус с ребрами охлаждения.
  8. Информационная табличка завода-изготовителя («шильдик»).
  9. Задняя крышка корпуса.
  10. Дополнительный вентилятор охлаждения двигателя («вертушка»). «Вертушка» устанавливается не на все двигатели. Если предполагаемое место работы обеспечивает хорошее воздушное охлаждение, то потребности в дополнительном обдуве не требуются.

На самом же деле асинхронный двигатель состоит из трех частей (слева-направо): ротора, статора и корпуса, но главными частями считаются именно ротор и статор, о которых мы с вами и поговорим.

Статор асинхронного двигателя

Статор асинхронного двигателя представляет из себя сердечник, состоящий из пластин электротехнической стали и содержащий в себе медные обмотки, которые определенным образом уложены в пазах статора.

Как было упомянуто, сердечник статора состоит из пластин, которые изолированы друг от друга. С внутренней стороны статора есть пазы
в которые укладывается изоляция

Далее в эти пазы наматывается медный лакированный провод определенным образом, который представляет из себя обмотки статора

Асинхронный двигатель имеет три «куска» медного провода

Которые определенным образом уложены в пазы статора под углом в 120 градусов друг относительно друга.

Все 6 концов обмоточных проводов выведены в клеммную коробку, которая находится на корпусе двигателя.

Статор двигателя, а точнее, размеры сердечника, количество катушек в каждой обмотке и толщина моточного провода из которого намотаны катушки определяют основные параметры двигателя. Например, от числа катушек в каждой обмотке зависит номинальное число оборотов двигателя, а от толщины провода, которым они намотаны, зависит номинальная мощность двигателя. Количество обмоток для трехфазного асинхронного двигателя всегда равно трем. А вот количество катушек в каждой из этих обмоток разное. Катушки могут наматывать в один или два провода. Учитывая, что номинальное число оборотов двигателя обратно пропорционально номинальной нагрузке, можно смело сказать, что скорость вращения вала асинхронного двигателя будет уменьшаться при увеличении нагрузки. Если при работе двигателя начнут уменьшаться его обороты из-за роста нагрузки, то не остановка этого процесса может привести к полной остановке двигателя. Двигатель начнет сильно гудеть, вал ротора не будет крутиться – возникнет сильный нагрев катушек, с последующим разрушением изоляции моточного провода, что приведет к короткому замыканию и возгоранию обмоток.

Ротор асинхронного двигателя

Давайте более подробно рассмотрим, из чего же состоит ротор асинхронного двигателя.

ротор асинхронного двигателя
ротор асинхронного двигателя

Самая главная часть — это вал. Иначе, как бы происходило вращение?

вал асинхронного двигателя
вал асинхронного двигателя

На вал ротора с двух сторон надеваются подшипники, которые крепятся к передней и задней крышкам и центруют ротор ровно посередине статора.

подшипники на валу ротора
подшипники на валу ротора

Далее идет сердечник, набранный из листов специальной электротехнической стали, которые изолированы друг от друга. Кстати, сетевые трансформаторы собираются из такой же стали.

сердечник ротора
сердечник ротора

электро-техническая сталь ротора двигателя
электро-техническая сталь ротора двигателя

Как вы можете далее заметить, в сердечнике ротора есть специальные пазы

пазы на сердечнике ротора
пазы на сердечнике ротора

В них вставляются медные или алюминиевые стержни,

стержни в роторе асинхронного двигателя
стержни в роторе асинхронного двигателя

которые замыкаются на кольцо с обеих сторон, образуя так называемую «беличью клетку».

беличья клетка асинхронного двигателя
беличья клетка асинхронного двигателя

В общем виде полностью собранный ротор асинхронного двигателя выглядит вот так.

ротор двигателя в сборе
ротор двигателя в сборе

А вот так он выглядит в реальном двигателе.

строение ротора асинхронного двигателя
строение ротора асинхронного двигателя

Всегда помните, что в асинхронном двигателе вращается ротор, а не статор. Статор — это неподвижная часть, а ротор — подвижная часть электродвигателя. В рабочем состоянии двигателя между ротором и статором всегда имеется воздушный зазор. При работе двигателя ротор ни в коем случае не должен задевать статор двигателя.

рабочее состояние статора
рабочее состояние статора

Принцип работы и число оборотов асинхронных двигателей

Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

n = 60f / p, об/мин

где f – частота сетевого напряжения, Гц; р – число полюсных пар статора.

Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов можно и нужно вручную по косвенным показателям. Как правило, используется три основных метода:

  • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже);
  • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

где 2p – число полюсов; Z 1 – количество пазов в сердечнике статора; y – собственно, шаг укладки обмотки.

Стандартные значения оборотов, таким образом можно представить в таблице:

  • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

2p = 0,35Z 1 b / h или 2p = 0,5D i / h,

где 2p – число полюсов; Z 1 – количество пазов в статоре; b – ширина зубца, см; h – высота спинки, см; D i – внутренний диаметр, образованный зубцами сердечника, см.

После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

От чего зависят обороты однофазного асинхронного двигателя

Двигатели постоянного тока

Резонансная частота: формула

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.
Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.

Методы регулирования частоты вращения изменением числа пар полюсов и напряжения на обмотках

Частота вращения вала асинхронных двигателей определяется из формулы: n = 60f / p, где f – частота напряжения сети Гц, р – число пар полюсов статора. Таким образом, подавая напряжение на разные секции обмоток, можно изменять количество подключенных пар полюсов и регулировать скорость двигателя. К недостаткам такого метода относятся усложнение конструкции. Кроме того, регулировать скорость можно только ступенчато на число, кратное количеству пар полюсов.

Методы регулирования частоты вращения

Еще один метод изменения скорости двигателя – регулировка величины питающего напряжения. Он непригоден для асинхронных двигателей с коротко-замкнутым ротором, так как при снижении напряжения на обмотках статора значительно снижает жесткость механических характеристик.

Область применения такого способа – приводы с асинхронными двигателями с фазным ротором. Для регулирования напряжения в цепь ободок вращающейся части вводится реостат. Таким образом, можно плавно изменять скорость вращения вала до синхронной частоты 3000 об/мин.

К недостаткам относят значительную потерю напряжения на резистивном элементе, недостаточную эффективность при небольшой нагрузке.

Метод изменения скорости двигателя

Механические характеристики при этом также ухудшаются.

Виды преобразователей частоты

Одна из самых первых схем частотных преобразователей – устройства с непосредственной связью с сетью. ПЧ такого типа имеют гальваническую связь с электросетью и обычно построены на базе быстропереключаемых тиристоров. Полупроводниковые элементы включены по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства преобразователей частоты с непосредственной связью с сетью

Устройства с непосредственной связью обеспечивают стабильную работу на малых скоростях двигателей, обладают высоким КПД. Преобразователи также могут обеспечивать возврат электроэнергии в сеть в режиме торможения двигателей. При необходимости мощность устройств возможно увеличить путем подключения дополнительных блоков. К недостаткам устройств относятся: несинусоидальная форма напряжения, возможность регулирования скорости только в меньшую сторону, относительная сложность схемы управления.

Наиболее распространенные в низковольтном приводе преобразователи частоты выполнены на базе схемы двойного преобразования с явно выраженным звеном постоянного тока.

Преобразователи частоты на базе схемы двойного преобразования

Силовая часть схемы состоит:

  • Из диодного трехфазного выпрямителя. Блок обеспечивает преобразование переменного тока в постоянный.
  • Из звена постоянного тока. Емкостной элемент обеспечивает фильтрацию постоянной составляющей и сглаживание пульсаций, возникающих при работе инвертора.
  • Из инвертора. Функциональный блок на быстропереключаемых транзисторах преобразовывает постоянное напряжение в переменное. Частота задается алгоритмом открытия/ закрытия полупроводниковых элементов и определяется широтно-импульсным модулятором.

Схемы двойного преобразования обеспечивают чистую синусоидальную форму напряжения на выходе, позволяют управлять скоростью выше и ниже синхронной частоты, обеспечивают жесткость характеристик во всем диапазоне. К недостаткам относят некоторую потерю мощности за счет двойного преобразования электроэнергии, сложность конструкции, относительно высокую стоимость.

Угол поворота и период обращения

Рассмотрим точку А на предмете, вращающимся вокруг своей оси. При обращении за какой-то период времени она изменит своё положение на линии окружности на определённый угол. Это угол поворота. Он измеряется в радианах, потому что за единицу берётся отрезок окружности, равный радиусу. Ещё одна величина измерения угла поворота – градус.

Частота тока

Когда в результате поворота точка А вернётся на своё прежнее место, значит, она совершила полный оборот. Если её движение повторится n-раз, то говорят о некотором количестве оборотов. Исходя из этого, можно рассматривать 1/2, 1/4 оборота и так далее. Яркий практический пример этому – путь, который проделывает фреза при фрезеровании детали, закреплённой в центре шпинделя станка.

Внимание! Угол поворота имеет направление. Оно отрицательное, когда вращение происходит по часовой стрелке и положительное при вращении против движения стрелки.

Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const.

В этом случае находят применения такие характеристики, как:

  • период обращения – T, это время, необходимое для полного оборота точки при круговом движении;
  • частота обращения – ν, это полное количество оборотов, которое совершает точка по круговой траектории за единичный временной интервал.

Интересно. По известным данным, Юпитер обращается вокруг Солнца за 12 лет. Когда Земля за это время делает вокруг Солнца почти 12 оборотов. Точное значение периода обращения круглого гиганта – 11,86 земных лет.

Циклическая частота вращения (обращения)

Формула механической мощности — средняя и мгновенная мощность

Скалярная величина, измеряющая частоту вращательного движения, называется циклической частотой вращения. Это угловая частота, равная не самому вектору угловой скорости, а его модулю. Ещё её именуют радиальной или круговой частотой.

Циклическая частота вращения – это количество оборотов тела за 2*π секунды.

У электрических двигателей переменного тока это частота асинхронная. У них частота вращения ротора отстаёт от частоты вращения магнитного поля статора. Величина, определяющая это отставание, носит название скольжения – S. В процессе скольжения вал вращается, потому что в роторе возникает электроток. Скольжение допустимо до определённой величины, превышение которой приводит к перегреву асинхронной машины, и её обмотки могут сгореть.

Устройство этого типа двигателей отличается от устройства машин постоянного тока, где токопроводящая рамка вращается в поле постоянных магнитов. Большое количество рамок вместил в себя якорь, множество электромагнитов составили основу статора. В трёхфазных машинах переменного тока всё наоборот.

При работе асинхронного двигателя статор имеет вращающееся магнитное поле. Оно всегда зависит от параметров:

  • частоты питающей сети;
  • количества пар полюсов.

Скорость вращения ротора состоит в прямом соотношении со скоростью магнитного поля статора. Поле создаётся тремя обмотками, которые расположены под углом 120 градусов относительно друг друга.

Переход от угловой к линейной скорости

Существует различие между линейной скоростью точки и угловой скоростью. При сравнении величин в выражениях, описывающих правила вращения, можно увидеть общее между этими двумя понятиями. Любая точка В, принадлежащая окружности с радиусом R, совершает путь, равный 2*π*R. При этом она делает один оборот. Учитывая, что время, необходимое для этого, есть период Т, модульное значение линейной скорости точки В находится следующим действием:

ν = 2*π*R / Т = 2*π*R* ν.

Так как ω = 2*π*ν, то получается:

ν = ω* R.

Следовательно, линейная скорость точки В тем больше, чем дальше от центра вращения находится точка.

К сведению. Если рассматривать в качестве такой точки города на широте Санкт-Петербурга, их линейная скорость относительно земной оси равна 233 м/с. Для объектов на экваторе – 465 м/с.

Числовое значение вектора ускорения точки В, движущейся равномерно, выражается через R и угловую скорость, таким образом:

а = ν2/ R, подставляя сюда ν = ω* R, получим: а = ν2/ R = ω2* R.

Это значит, чем больше радиус окружности, по которой движется точка В, тем больше значение её ускорения по модулю. Чем дальше расположена точка твердого тела от оси вращения, тем большее ускорение она имеет.

Поэтому можно вычислять ускорения, модули скоростей необходимых точек тел и их положений в любой момент времени.

Связь между угловой и линейной скоростями

Понимание и умение пользоваться расчётами и не путаться в определениях помогут на практике вычислениям линейной и угловой скоростей, а также свободно переходить при расчётах от одной величины к другой.

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором;
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).



Синхронные скорости вращения асинхронных электродвигателей в зависимости от частоты (10-100 Гц) и числа полюсов (2-12), Таблица и формула для расчета.

Синхронная скорость вращения обычных асинхронных двигателей выражается как:

  • n = 60*f *2 / p         (1)
  • где
  • n = скорость вращения штока  (об/мин, rpm)
  • f = частота (ГЦ=Hz; оборотов/с; 1/с)
  • p =число полюсов, !!! если формула дается в виде n = (60*f ) / p, то под p понимается число пар полюсов, а не число полюсов!!!

Пример – синхронная скорость четырехполюсного электродвигателя:

Если двигатель запитан напряжением 60Гц , синхронная скорость считается так:

n =  (60*60) (2 / 4) = 1800 об/мин

Таблица синхронной скорости вращения асинхронных электродвигателей в зависимости от частоты и числа полюсов:

Таблица синхронной скорости вращения асинхронных электродвигателей в зависимости от частоты и числа полюсов:Скорость вращения электромотора, электродвигателя: об/минЧастота- f -(Гц=Hz)Число полюсов – p -24681012

10600300200150120100
201200600400300240200
301800900600450360300
4024001200800600480400
501)300015001000750600500
602)360018001200900720600
704200210014001050840700
804800240016001200960800
9054002700180013501080900
100600030002000150012001000
  1. РФ, Европа, большая часть мира  – 50 Гц
  2. США, Южная Корея, Канада, Тайвань- 60Гц
Предыдущая
РазноеФормула мощности электрического тока, расчет по мощности и напряжению
Следующая
РазноеPE проводник — что это такое и для чего нужно. Разделение PEN проводника на PE и N
Будет интересно➡  Беспроводная передача электроэнергии: беспроводная передача электричества по теории Тесла
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять