Подключение электродвигателя 380В на 220В

Как подключить трехфазный двигатель к сети 220 или 380 В? Подключение двигателя “Звездой” и “Треугольником” – схемы и примеры

Общая информация

Подключение трехфазных двигателей подразумевает относительно сложную операцию, которая требует понимания процессов, протекающих в электроустановке. Для чего необходимо рассмотреть как составляющие элементы, так и их назначение.

Конструктивно трехфазные электродвигатели состоят из:

  • Статора с магнитопроводом;
  • Ротора с валом;
  • Обмоток.

В зависимости от типа двигателя встречаются модели с короткозамкнутым или фазным ротором. В одних ротор вращается только за счет электромагнитного поля, наводимого от обмоток статора, в других, вращение вала получает усилие от поля ротора при протекании тока в его обмотках.  Для включения трехфазных двигателей необходимо разобраться с тем, как фазы обмоток соединяются между собой.

Подключение трехфазного двигателя

Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.

Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.

По принципам построения сетей 380В я уже подробно писал в статьях про трехфазный счетчик и реле напряжения.

В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?

2. Подключение двигателя через рубильник или выключатель

Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.

Что нужно знать о двигателе перед подключением

Трёхфазный двигатель, как понятно из названия, создан для работы от электросети, имеющей три фазы. В быту подобные устройства встречаются намного реже, чем однофазные электромоторы. Однако, у них есть одно существенное преимущество – лучший показатель КПД. Поэтому трёхфазную схему обычно применяют для изготовления мощных двигателей, используемых в промышленных установках. В быту такой мотор может применяться в различных станках домашней мастерской, системах вентиляции, водоподачи.

Трёхфазный электродвигатель бывает по способу работы двух типов:

  1. Синхронный имеет повышенные скорости работы, но требует для своего разгона дополнительных затрат энергии. Изначально он работает в асинхронном режиме, пока не достигает требуемых оборотов, и не переходит в синхронную стадию. Синхронные моторы позволяют постепенно снижать или наращивать обороты. Однако, они сложны в изготовлении, вследствие чего имеют большую себестоимость. Это обусловило их небольшое распространение, по сравнению с асинхронными вариантами трёхфазных электромоторов.
  2. Асинхронный электродвигатель не допускает регулировки оборотов в процессе работы. Максимальная скорость его вращения также несколько ниже. Но подобные моторы более просты по своей конструкции, не такие дорогие, и отличаются большей надёжностью и ремонтопригодностью. Благодаря этим преимуществам, они используются гораздо чаще, как в промышленных производствах, так и в быту.

Трёхфазные моторы, выпускаемые современной промышленностью, имеют различные эксплуатационно-технические характеристики. Вся необходимая информация указывается на корпусе устройства:

  • Тип – синхронный или асинхронный.
  • Напряжение и частота питающей сети.
  • Максимальная мощность мотора.
  • Число развиваемых оборотов за минуту.

Более подробная информация относительно технических параметров даётся в прилагаемом к электродвигателю техпаспорте. Конструктивно устройство состоит из следующих основных элементов:

  • Корпус, служащий основой для крепления остальных деталей.
  • Статор.
  • Ротор, отделённый от статора воздушным пространством.
  • Обмотка, состоящая из трёх проводников, располагающихся по окружности под углом 120о.
  • Шкив вала, служащий для передачи крутящего момента внешним рабочим механизмам.

Концы всех трёх обмоток двигателя выведены в распредкоробку, расположенную в верхней части корпуса. Трёхфазные электромоторы бывают рассчитанными только на одно напряжение, например, на 380В, либо на два – на 220 и на 380 вольт. Для устройств, работающих с двумя типами напряжения, в распредкоробку выводятся сразу шесть концов, а для моторов, предназначенных только для одного типа напряжения – три. На внутренней поверхности крышки коробки наносится схема подсоединения выводов к питающей электросети.

Подключение трехфазного двигателя к сети 380В

Различают две базовые схемы (видео и схемы в следующем подразделе статьи):

  • треугольник,
  • звезда.

Преимущество соединения треугольником – работа на максимальной мощности. Но при включении электродвигателя в намотках продуцируются высокие пусковые токи, опасные для техники. При подключении звездой пуск мотора плавный, поскольку токи при нем низкие. Но достичь максимальной мощности при этом не получится.

В связи с вышесказанным двигатели при питании от 380 Вольт соединяют только звездой. Иначе высокий вольтаж при включении треугольником способен развить такие пусковые токи, что агрегат выйдет из строя. Но при высокой нагрузке выдаваемой мощности может не хватать. Тогда прибегают к хитрости: запускают двигатель звездой для безопасного включения, а затем переключаются с этой схемы на треугольник для набора высокой мощности.

Треугольник и звезда

Перед тем, как рассмотрим эти схемы, условимся:

  • У статора есть 3 обмотки, у каждой из которых – по 1 началу и по 1 концу. Они выведены наружу в виде контактов. Поэтому для каждой намотки их 2. Будем обозначать: обмотка – О, конец – К, начало – Н. На схеме ниже 6 контактов, пронумерованных от 1 до 6. Для первой обмотки начало – 1, конец – 4. Согласно принятым обозначениям это НО1 и КО4. Для второй обмотки – НО2 и КО5, для третьей – НО3 и КО6.
  • В электросети 380 Вольт 3 фазы: A, B и C. Их условные обозначения оставим прежними.

При соединении обмоток электродвигателя звездой сначала соединяют все начала: НО1, НО2 и НО3. Тогда к КО4, КО5 и КО6 соответственно подают питание от A, B и C.

При подключении асинхронного электродвигателя треугольником каждое начало соединяют с концом намотки последовательно. Выбор порядка номеров обмоток произвольный. Может получиться: НО1-КО5-НО2-КО6-НО3-КО2 .

Соединения звездой и треугольником выглядят так:

Смотрите видео, которое поможет разобраться в способах соединения намоток.

Переходная схема

Для плавного включения электродвигателя 380 в 3х фазную электросеть и высокой отдачи мощности запускают его звездой. После разгона он автоматически переключается со схемы и начинает работать треугольником. Недостаток метода – невозможность смены направления вращения вала.

Переходная схема подразумевает подключение через магнитный пускатель (смотрите также видео). Таких понадобится 3:

  1. Первый на схеме обозначен МП1 (магнитный пускатель 1). Он соединяет начала намоток статора НО1, НО2 и НО3 с фазами сети напряжением 380 Вольт: А, В и С.
  2. Второй пускатель – МП2. Он соединяет концы обмоток КО4, КО5 и КО6 с фазными проводами А, В и С треугольником.
  3. Третий пускатель – МП3. Необходим для соединения концов намоток с 3х фазной сетью звездой.
Будет интересно➡  Что такое дифференциальный автомат?

4
4

Внимание! Пускатель 2 и 3 нельзя включать одновременно, потому что возникнет короткое замыкание. В связи с этим произойдет защитное отключение на аварийном щитке. Чтобы случайно пускатель 2 не включился одновременно с 3, необходима электрическая блокировка. Тогда третий магнитный пускатель включится только после того, как выключится второй. И наоборот.

Принцип работы:

  1. Включается первый пускатель;
  2. Срабатывает реле времени, которое включает третий магнитный пускатель (пуск звездой);
  3. Через заданное время реле отключает третий и включает второй пускатель (работа треугольником).

Работу прекращают через размыкание МП1. При повторном запуске пункты 1-3 повторятся.

Подключение трехфазного двигателя к сети 220В

Подключение трехфазного двигателя к однофазной сети так же возможно, как и включение его в трехфазную сеть. Разница будет лишь в способе подключения и в выдаваемой мотором рабочей мощности. Она не сможет превышать 50% от максимального значения, достигаемого при питании от сети 380 Вольт, если соединить обмотки звездой. При подключении методом треугольника можно развить 70% от максимально возможной мощности. Поэтому, если питание подается от сети 220В, имеет смысл подключать электродвигатель только вторым способом.

Внимание! Если в электросети напряжение составляет 220 Вольт, то токи при запуске не достигают критических значений даже при соединении в треугольник. Поэтому данная схема является оптимальной.

Схема подсоединения мотора 380 на 220

При питании от 380 на каждую намотку приходится одна фаза. Но при подключении к 220 Вольт к двум обмоткам подключается фазный и нулевой провод, третья остается свободной. Для компенсации отсутствия третьей фазы запуск электродвигателя происходит через конденсатор.

Важно! Запустить мотор на 380 Вольт от напряжения 220В можно только с использованием конденсаторов. Без них могут работать только двигатели, рассчитанные на питание от 220 изначально.

Если запускается в ход маломощный мотор (не более 1500 Вт) без начальной нагрузки, то подключать можно лишь через рабочий конденсатор. От него идут два провода. Первый нужно соединить с нулем, а второй – с 3-ей вершиной треугольника.

Внимание! Если вам необходимо обратить направление вращения двигателя, подключенного к сети 220 Вольт, то первый вывод от конденсатора включите не через нуль, а через фазный провод.

При запуске мощного асинхронного двигателя (от 1500 Вт) или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к 220В через рабочий и пусковой конденсаторы. Последний подключается параллельно первому. Он необходим для увеличения пускового момента, поэтому его включение происходит только в момент запуска мотора в ход.

Пусковой конденсатор включают в схему через кнопку, а подача питания в 220В происходит путем перевода специального тумблера в положение «включено», отключение – в состояние «выключено». Вместо тумблера можно воспользоваться кнопкой с двумя позициями. Тогда запуск будет следующим:

  • Питание подается через тумблер или специальную кнопку;
  • Нажимается кнопка пускового конденсатора;
  • Она удерживается до тех пор, пока электродвигатель не разгонится;
  • Кнопка пуска отпускается, отчего ее пружины размыкают цепочку конденсатора.

При включении электродвигателя в сеть 220 Вольт с реверсом для изменения направления вращения вала понадобится еще один тумблер. При смене положения один из выводов рабочего конденсатора будет соединяться то с фазой, то с нулем.

Подбор конденсаторов

Емкость конденсаторов для подключения к 220В необходимо подбирать. В случае с рабочим накопителем это просто. Расчет его емкости происходит по формулам:

  • Соединение треугольником: Ср=4800*I/U.
  • Соединение звездой: Ср=2800*I/U.

Внимание! Ср – емкость рабочего конденсатора, I – сила тока (смотреть в паспорте к устройству), а U – напряжение, при котором работает мотор. Так как питание однофазное, то U равно 220 Вольтам.

Подбор пускового накопителя происходит опытным путем (смотрите видео). Обычно его емкость (Сп) больше в 2-3 раза по сравнению с Ср. Например: есть мотор с током в обмотках 2 ампера. При подсоединении намоток треугольником в сеть 220 Ср будет равен 25 мкФ. Тогда Сп будет варьироваться в диапазоне 50-75 мкФ. Но таких накопителей не найти в магазинах. Поэтому придется купит несколько с номинальной емкостью и соединить их параллельно. 25 мкФ можно получить из 2 по 10 мкФ и 1 по 5.

Если Сп будет меньше требуемого значения, то намотки статора будут перегреваться. Возможно даже плавление изоляционной оболочки. Если Сп будет больше требуемого, то нельзя будет развить достаточную мощность. Поэтому подбор начинайте с минимальной емкости (в примере это 50 мкФ), а затем ищите оптимальное значение путем добавления накопителей номинальной емкости.

Внимание! Не давайте двигателю работать без нагрузки. Если он переделан с 380 на 220, то он при этом сгорит! Нельзя запитывать моторы от бытовой сети 220В, если они развивают мощность более 3000 Вт. Это чревато плавлением старой или некачественно сделанной проводки или вышибанием пробок.

Для запитывания двигателя от 220В подойдут накопители от 300В следующих типов:

  • МБГЧ,
  • МБПГ,
  • МБГО,
  • БГТ.

Вы можете узнать все характеристики накопителя (емкость, тип, рабочее напряжение), взглянув на его корпус.

Условные обозначения на схемах

условные обозначения на принципиальной электрической схеме подключения электродвигателя

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.
магнитный пускатель на принципиальной электрической схеме

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя ), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).
приставка с блок-контактами для контактора

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.
двухкнопочный и трехкнопочный пост

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».
кнопки на принципиальной электрической схеме

Подключение трехфазного двигателя к сети

Электродвигатели — это весьма распространенный элемент электрических сетей. Поэтому подключение двигателя всегда сопровождается определенными вопросами.

Далее в статье мы ответим на такие распространенные вопросы относительно присоединения к сети асинхронного электродвигателя.

Оптимальная схема

Оптимальная схема подключения электродвигателя к сети 380 /220 В содержит минимум элементов и обеспечивает следующее:

  • удобно включать и выключать трехфазный электродвигатель 380 вольт (как и 220 вольт);
  • защищает электродвигатель 380 В (220 В) от основной перегрузки — токовой.
Будет интересно➡  Что такое омическое сопротивление?

В силу этих причин для подключения двигателя применяется магнитный пускатель. Этот выбор обычно основан на определенных потребностях пользователя трехфазных электродвигателей. Поэтому в зависимости от выбранной модели пускателя его катушка может быть либо на 380 В, либо на 220 В.

Читайте также:  Площадь сечения провода – советы электрика

Эта катушка подсоединяется через тепловое реле, которое обеспечивает контроль тока в статоре электромотора и отключает пускатель своими контактами.

Срабатывание реле теплозащиты от заданной величины тока, потребляемого электрическим мотором, останавливает его путем отключения от электросети.

Совет

С подсоединением двигателя к трехфазной сети при появлении короткого замыкания токи контролируются выключателем-автоматом. Удобство при запуске, а также при остановке обеспечивают соответствующие кнопки.

А дополнительное подсоединение — возможность блокировки пусковой кнопки ее присоединением через отдельный контакт в магнитном пускателе. С целью управления движком достаточно кратковременного нажатия на эти кнопки.

Одновременное воздействие на них не вызовет нежелательные последствия, поскольку катушка пускателя при этом отключается. Две схемы, показанные далее, отличаются лишь напряжением, которое питает катушку пускателя.

Катушка одной из них подключается к фазному напряжению (220 В), а в другой к линейному, т.е. 380 В. Упомянутые соединения работают в остальном совершенно одинаково. Сначала включается коммутатор-автомат. Он подает напряжение на электрическую цепь, содержащую соленоид пускателя.

Когда для соединения замыкают эту электрическую цепь кнопкой пуска с нормально разомкнутым контактом, пускатель срабатывает. Соответствующие контакты замкнут электрические цепи, питающие статор движка и обеспечивающие питание собственного соленоида. Кнопка пуска шунтируется.

Таким образом, выполняется подключение асинхронного двигателя к электросети.

Возможные дальнейшие события:

  • нажатие на кнопку «Стоп»,
  • короткое замыкание,
  • перегрузка двигателя

вызовет срабатывание соответствующего коммутатора и, как следствие, размыкание питания с подключенными клеммами катушки магнитного пускателя. А его можно включить только кнопкой «Пуск». Поэтому, что бы ни произошло, включения электродвигателя не будет до следующего запуска.

Соленоид пускателя запитан фазным напряжениемСоленоид пускателя запитан фазным напряжением

1 — автоматический коммутатор с тремя контактами (трехфазный, трехполюсный);

2 — термореле;

3 — главные контакты пускателя;

4 — соленоид пускателя;

5 — дополнительный контакт, встроенный в пускатель;

Кнопки: 6 — запуск, 7 — остановка.

Отличительные детали

То, что схема включения типа «звезда» существенно отличается от схемы «треугольник», очевидно. В этом можно убедиться, глядя на изображения, показанные ниже.

Схемы «звезда» (1) и «треугольник» (2)

Некоторым читателям может быть интересно, каково поведение движка при переключении его обмоток соответственно этим двум схемам. Все довольно просто объясняет устройство и подключение электродвигателя. Обмотки намотаны на сердечник. Он создает магнитное поле.

Чем мощнее это поле, тем больше получится сила на вале двигателя. А поле тем мощнее, чем выше напряжение, к которому подключена обмотка.

Поскольку линейное напряжение соответствует схеме «треугольник» 380 В, а фазное — схеме «звезда» 220 В, очевидно, что одна и та же обмотка двигателя создаст более мощное магнитное поле с подключением к напряжению 380 В.

По этой причине и получается разница мощности трехфазного асинхронного двигателя около полутора раз с переключением между этими схемами.

Но в этом варианте получается разница не только в полезной механической мощности на вале двигателя, но и в силе тока при его запуске. Однако для правильного подключения движка важно также знать точные данные о его конструкции.

Числа витков обмоток, подключенных к питающему напряжению, не должны при его величине и частоте вызывать насыщение сердечников статора.

В принципе, если имеется двигатель 380 В, а схема обмотки электродвигателя такова, что его фазные обмотки снабжены дополнительным выводом, соответствующим меньшему числу витков, который может быть использован для присоединения к 220 В, со схемой «звезда» будут получены параметры, аналогичные «треугольнику» с основными обмотками. В том числе и пусковое свойство тока.

Обратите внимание

Ввиду того, что конструкция движка в таком варианте усложняется, чаще применяется электродвигатель, подключение которого обеспечивается переключением между этими схемами. Перед подключением трехфазного двигателя к схеме «треугольник», его запуск делается со схемой соединения «звезда». Дополнительное реле времени через заданный интервал срабатывает и выполняет переход к «треугольнику» (см.

схемы, показанные ниже).

Схема переключения обмоток трехфазного асинхронного двигателяСхема соединения катушек электромагнитных коммутаторов

В показанных выше схемах U* и W* — выводы статора асинхронного трехфазного двигателя.

K1 — пускатель с возможностью управления по времени;

K2 и K3 — дополнительные пускатели.

Управляющее напряжение на клеммах N и L питает соленоид K3, который блокирует включение соленоида K2, но включает соленоид K1 и соединяет три вывода обмоток вместе.

Двигатель начинает вращение, будучи соединенным по схеме «звезда». K1 снабжен реле времени. По истечении заданного интервала оно срабатывает.

При этом K3 выключается, и K2, включаясь, замыкает контакты, переводя электродвигатель по схеме «звезда» в схему «треугольник».

Как получить более длительный срок службы

В асинхронном двигателе с короткозамкнутым ротором-болванкой есть только те элементы, которые изнашиваются с течением времени. Это можно легко заметить, проанализировав его конструкцию.

Если электрические и механические режимы соответствуют конструктивно заложенным нормам, асинхронный движок — это самый долгоживущий из всех электромоторов.

Поэтому применяя схемы, создающие оптимальные рабочие режимы или отключающие двигатель при неблагоприятных условиях работы, тем самым вы увеличиваете срок службы асинхронного двигателя, так же, как и любого другого электродвигателя.

Рассмотрим наиболее частые ситуации, в которых необходимо использование специальных защитных схем:

  • Замыкания между витками обмотки статора и его сердечником, замыкания перед статором как в коробке с клеммами, так и в соединительном кабеле. Если не применять меры при замыканиях, связанных с витками обмоток, можно получить в результате повреждения электрические цепи с токами такой силы, что обмоточные провода местами оплавятся и оборвутся. Придется перематывать статор.
  • Механическая перегрузка движка вызывает значительный его нагрев. Причины этому могут быть разные. Не только со стороны полезной нагрузки, но и со стороны подшипников, в которых трение благодаря тем или иным обстоятельствам стало весьма значительным. Аналогичным тепловым эффектом сопровождается отключение одной фазы в нагруженном двигателе. Токи в двух подключенных обмотках могут вдвое увеличиться (в сравнении с номинальным значением), что вызовет нагрев и их порчу. Нагрев ухудшает изоляционные свойства витков и проводов в клеммной коробке, затем происходит замыкание и быстрое лавинообразное нарастание событий разрушительного характера.

Для защиты двигателя применяются различные элементы, которые своевременно отключают его при заданной величине электрического тока. Эти элементы — плавкие предохранители и коммутаторы различной конструкции.

Они позволяют беспрепятственно разгонятся движкам, несмотря на пусковые токи, но немедленно отключают двигатели при замыканиях.

Схема с использованием таких коммутаторов, как автоматический выключатель и тепловое реле, уже описывалась в первом вопросе этой статьи. Она является самой простой и безотказной.

Важно

Однако в ней не рассматривалась возможность отключения движка при пропадании напряжения в одной из фаз. Для того чтобы реализовать такое отключение, в схему вводится дополнительное реле (2 на схеме далее).

Будет интересно➡  Что такое коэффициент трансформации — от чего зависит и что показывает

Схема, обеспечивающая более длительный срок службы асинхронного трехфазного двигателя

1— выключатель-автомат,

2 — реле контроля напряжения фаз, а также принадлежащие ему контакты 3,

3 — пускатель и принадлежащие ему контакты 5 и 7.

Кнопки: 6 — запуска, 8 — остановки.

Как схема работает, уже было пояснено ранее в разделе «Оптимальная схема» Реле тепловой защиты здесь не показано, но его подключение при необходимости уже демонстрировалось выше.

Схема включения трёхфазного электродвигателя на 220В

Трёхфазные моторы предназначаются для подключения к сети, имеющей также три выхода фаз. При работе от однофазного питания, выдаваемая агрегатом мощность будет на 30% ниже установленной. Кроме того, далеко не каждый трёхфазник подходит для однофазной цепи. Имеются также и различия в схемах включения таких электромоторов в 220-вольтную сеть. Но в быту далеко не всегда имеется возможность запитать мотор от трёхфазной проводки. Непосредственно к жилым домам и в квартиры, согласно стандартам СНиП, обычно не подводится 380В.

Электродвигатели с возможностью подключения и к двум типам электрической цепи, имеют различные технические характеристики, касающиеся рабочего напряжения. От этого зависит схема их подключения к 220В, и показатели потери рабочих мощностей. Установить, как подключить определённый тип мотора, можно по обозначению на шильдике корпуса:

ОбозначениеТип подключенияПотери мощности
127/220«звезда»30%
220/380«треугольник», «звезда»30%
380/660«треугольник»70%

В последнем случае, при подключении трёхфазного двигателя к однофазной цепи потеря составит 2/3 от установленной мощности. Поэтому, моторы, с обозначением 380/660 запитывать от 220 вольт, хотя и возможно, но абсолютно нецелесообразно. Для подключения двигателя к однофазной цепи используются два варианта:

  1. С помощью преобразователя частот. Данный прибор способен преобразовывать одну фазу, имеющуюся в сети 220-вольтовой сети, в три фазы с таким же напряжением. Однако, вследствие высокой стоимости преобразователя, в быту такой вариант используется редко.
  2. Посредством конденсатора. Такой метод более распространён из-за своей простоты и доступности. Именно его подробнее рассмотрим далее.

Подключение трёхфазного электродвигателя потребует использования конденсаторов для переменного тока. Без них электричество от одной фазы будет проходить по обмоткам, но вращения ротора не происходит. Чтобы создать смещение фазы, получить крутящий момент магнитного поля, к одной из обмоток подключаются конденсаторы. Важный момент – использовать конденсаторы постоянного тока для переменной сети нельзя, из-за высокой вероятности их взрыва в процессе работы.

Всего в схеме присутствуют два их типа: С1 – пусковой, и С2 – рабочий. Номинальное напряжение у каждого из них должно быть не менее 300В. В идеале, лучше взять устройства с ещё большим показателем – свыше 350В. В продаже можно встретить конденсаторы, специально предназначаемые для запуска электродвигателя. Они имеют соответствующее обозначение, и использовать их как рабочие запрещено. Минимально необходимая ёмкость конденсаторов зависит от мощности электродвигателя, и показана в таблице в микрофарадах:

Мощность двигателя0,4 кВт0,6 кВт0,8 кВт1,1 кВт1,5 кВт2,2 кВт
Ёмкость С1 (пускового) в номинальном режиме80120160200250300
Ёмкость С1 (пускового) в недогруженном режиме2035456080100
Ёмкость С2 (рабочего) в номинальном режиме406080100150230
Ёмкость С2 (рабочего) в недогруженном режиме25406080130200

Сама схема подключения трёхфазных электродвигателей с использованием конденсаторов, как в варианте «звезды», так и «треугольника», будет выглядеть весьма просто:

Для управления пусковым конденсатором, предназначенного для страгивания с места и разгона 3-х фазного двигателя, используют выключатель. На схеме, представленной выше, он обозначен словом «Разгон». После набора мотором необходимых оборотов и выхода его на рабочий режим, кнопка управления отключается. При наличии достаточных навыков в обращении с электротехникой, ручное управление можно заменить на автоматическое реле, либо на таймер отключения.

Какая схема нужна для реверса трехфазного асинхронного двигателя

Это схемное решение путем коммутации изменяет последовательность обмоток. При этом на них смотрят с оси вращения вала. В результате этого вал трехфазного асинхронного движка вращается в противоположном направлении (схема показана ниже).

Схема для реверса трехфазного асинхронного двигателя

Схема весьма проста и не требует специальных пояснений

Можно ли управлять двигателем из двух мест

Управлять двигателем из двух мест можно, и схема, которая обеспечивает этот процесс, несложная. Для нее нужны спаренные кнопки «Пуск» и «Стоп», что и отражено на изображении ниже. В остальном ее элементы и соединения такие же, как и в схеме, которую можно назвать стандартной для трехфазного асинхронного движка.

Схема управления трехфазным асинхронным двигателем из двух мест

Трехфазные асинхронные двигатели — не единственные часто используемые движки. Но их схемы получаются наиболее сложными из-за трех статорных обмоток. В коллекторных движках аналогичные задачи решаются намного проще. Хотя бы потому, что они присоединяются к электросети только двумя клеммами.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Подключение электрического двигателя

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению.

Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Меры безопасности при подключении трехфазного двигателя: напоминание

Сначала я повторюсь с рекомендацией использовать все подключения только через отдельный автоматический выключатель. Это очень важно.

Работы по наладке схемы под напряжением должны выполнять обученные люди. Знание ТБ — обязательное условие.

Использование разделительного трансформатора значительно сокращает риск попасть под действие тока. Поэтому используйте его при любых наладочных работах под напряжением.

Специальный инструмент электрика с диэлектрическими рукоятками не только облегчает работу, но и сохраняет здоровье. Не пренебрегайте им!

В заключение рекомендую посмотреть полезное видео по подключению трехфазного двигателя к однофазной сети.

Предыдущая
РазноеЭлектропроводка в частном доме своими руками
Следующая
РазноеРасчет падения напряжения в кабеле. Калькулятор расчета потери напряжения в кабеле
Ссылка на основную публикацию
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять