Что такое видимый свет?

Что такое видимый свет?

Что такое свет

Конечно, все должно быть не так. Свет озадачивает лучшие умы на протяжении веков, но знаковые открытия, совершенные за последние 150 лет, постепенно приоткрывали завесу тайны над этой загадкой. Теперь мы более-менее понимаем, что это такое.

Физики современности не только постигают природу света, но и пытаются управлять ей с беспрецедентной точностью — и значит, свет очень скоро можно заставить работать самым удивительным способом. По этой причине Организация Объединенных Наций провозгласила 2015 году Международным годом Света.

Свет можно описать всевозможными способами. Но начать стоит с этого: свет — это форма излучения (радиации). И в этом сравнении есть смысл. Мы знаем, что избыток солнечного света может вызвать рак кожи. Мы также знаем, что радиационное облучение может вызвать риск развития некоторых форм рака; нетрудно провести параллели.

Свет бывает разным, и иногда он может нанести вред

Но не все формы излучения одинаковы. В конце 19 века ученые смогли определить точную суть светового излучения. И что самое странное, это открытие пришло не в процессе изучения света, а вышло из десятилетий работы над природой электричества и магнетизма.

Как ученые изучали свет

Электричество и магнетизм кажутся совершенно разными вещами. Но ученые вроде Ганса Христиана Эрстеда и Майкла Фарадея установили, что те глубоко переплетаются. Эрстед обнаружил, что электрический ток, проходящий через провод, отклоняет иглу магнитного компаса. Между тем, Фарадей обнаружил, что перемещение магнита вблизи провода может генерировать электрический ток в проводе.

Математики того дня использовали эти наблюдения для создания теории, описывающей это странное новое явление, которое они назвали «электромагнетизм». Но только Джеймс Клерк Максвелл смог описать полную картину.

Вклад Максвелла в науку сложно переоценить. Альберт Эйнштейн, который вдохновлялся Максвеллом, говорил, что тот изменил мир навсегда. Среди прочих вещей, его вычисления помогли нам понять, что такое свет.

Максвелл показал, что электрические и магнитные поля передвигаются в виде волн, и эти волны движутся со скоростью света. Это позволило Максвеллу предсказать, что свет сам по себе переносится электромагнитными волнами — и это означает, что свет является формой электромагнитного излучения.

В конце 1880-х, через несколько лет после смерти Максвелла, немецкий физик Генрих Герц первым официально продемонстрировал, что теоретическая концепция электромагнитной волны Максвелла была верной.

«Я уверен, что если бы Максвелл и Герц жили в эпоху Нобелевской премии, они бы точно одну получили», — говорит Грэм Холл из Университета Абердина в Великобритании — где работал Максвелл в конце 1850-х.

Максвелл занимает место в анналах науки о свете по другой, более практической причине. В 1861 году он обнародовал первую устойчивую цветную фотографию, полученную с использованием системы трехцветного фильтра, которая заложила основу для многих форм цветной фотографии сегодня.

Свет с точки зрения физики

С точки зрения физики, свет проявляет себя двояко:

  1. Как электромагнитная волна (волновая теория света).
  2. Как поток частиц (корпускулярная или эмиссионная теория).

Согласно первой теории, свет представляет собой электромагнитное излучение (подобно радиоволнам). Вторая теория утверждает, что световое излучение – поток частиц, обладающих импульсом (подобно летящим в пространстве шарикам).

Впервые электромагнитную теорию, объясняющую некоторые свойства и эффекты, предложил Максвелл. В дальнейшем это направление было развито Юнгом и Френелем.

На рубеже 19 и 20 веков выяснилось, что не все явления можно объяснить с помощью волновой теории. В некоторых эффектах свет проявлял себя, как поток частиц. Эти частицы назвали фотонами. Световое излучение снова стали рассматривать с этой стороны. Сторонником корпускулярной теории был и Альберт Эйнштейн.

По современным представлениям, обе эти теории находятся не в противоречии, но дополняют друг друга. Некоторые световые явления объясняются с точки зрения волновой теории, некоторые – с точки зрения корпускулярной.

Что такое свет: состав, свойства, цветовой спектр видимого излучения
Корпускулярно-волновой дуализм светового излучения

Например, с точки зрения волновой теории объясняют различие цветов, воспринимаемых глазом, а также такие явления, как дифракция и интерференция. Однако законы геометрической оптики проще и логичнее объяснять с помощью корпускулярной теории.

Некоторые физические явления (например, давление света) объясняют с точки зрения как одной, так и другой теории.

Из чего состоит свет

Согласно современным представлениям, свет состоит из частиц – фотонов (реже употребляется название световые кванты). Это название ввел американец Гилберт Ньютон Льюис. Излучение света источником сводится к выбросу большого количества фотонов.

С точки зрения современной физики, фотон не имеет размеров, внутренней структуры, а также массы покоя. Последнее означает, что частица света может существовать, лишь двигаясь со скоростью света – около 300 000 км/с. Эта скорость постоянна в любой системе отсчета, если при этом фотон движется в вакууме. При попадании на непрозрачный физический объект световой квант либо отражается, либо поглощается. Фотон является электрически нейтральной частицей, то есть, его заряд равен нулю.

.

Как движется свет

Некоторые считали, что свет движется в форме волн или ряби, через воздух или загадочный «эфир». Другие думали, что эта волновая модель ошибочна, и считали свет потоком крошечных частиц. Ньютон склонялся ко второму мнению, особенно после серии экспериментов, которые он провел со светом и зеркалами.

Будет интересно➡  Как подключить выключатель света

Он понял, что лучи света подчиняются строгим геометрическим правилам. Луч света, отраженный в зеркале, ведет себя подобно шарику, брошенному прямо в зеркало. Волны не обязательно будут двигаться по этим предсказуемым прямым линиям, предположил Ньютон, поэтому свет должен переноситься некоторой формой крошечных безмассовых частиц.

Проблема в том, что были в равной степени убедительные доказательства того, что свет представляет собой волну. Одна из самых наглядных демонстраций этого была проведено в 1801 году. Эксперимент с двойной щелью Томаса Юнга, в принципе, можно провести самостоятельно дома.

Возьмите лист толстого картона и аккуратно проделайте в нем два тонких вертикальных разреза. Затем возьмите источник «когерентного» света, который будет излучать свет только определенной длины волны: лазер отлично подойдет. Затем направьте свет на две щели, чтобы проходя их он падал на другую поверхность.

Вы ожидаете увидеть на второй поверхности две ярких вертикальных линии на тех местах, где свет прошел через щели. Но когда Юнг провел эксперимент, он увидел последовательность светлых и темных линий, как на штрих-коде.

Когда свет проходит через тонкие щели, он ведет себя подобно водяным волнам, которые проходят через узкое отверстие: они рассеиваются и распространяются в форме полусферической ряби.

Когда этот свет проходит через две щели, каждая волна гасит другую, образуя темные участки. Когда же рябь сходится, она дополняется, образуя яркие вертикальные линии. Эксперимент Юнга буквально подтвердил волновую модель, поэтому Максвелл облек эту идею в твердую математическую форму. Свет — это волна.

Но потом произошла квантовая революция.

Основные характеристики и свойства света

Так как свет является электромагнитным излучением (подобно радиоволнам, только с очень высокой частотой), он имеет те же характеристики, что и любой колебательный процесс:

  • частота;
  • фаза;
  • амплитуда.

В оптике, как и в других разделах физики, для длины волны света применяется буква λ, а частота света обозначается как общепринятой латинской буквой f, так и греческой буквой ν (ню).

Вместо частоты света для видимого излучения удобнее использовать длину волны, которая связана с частотой соотношением λ=с/ν, где с – скорость света в метрах в секунду. Чем выше частота, тем меньше длина волны.

Подавляющее большинство источников света испускают огромное количество фотонов с хаотически изменяющейся фазой. И лишь лазер «выдает» отрезки световых волн («цуги»), находящиеся в одной фазе. В этом случае говорят о когерентности излучения.

Если вам нужны более подробные доказательства того, насколько субъективно наше восприятие цвета, вспомните радугу. Большинство людей знают, что спектр света содержит семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. У нас даже есть удобные пословицы и поговорки про охотников, которые желают знать место нахождения фазана. Посмотрите на хорошую радугу и попробуйте разглядеть все семь. Это не удалось даже Ньютону. Ученые подозревают, что ученый разделил радугу на семь цветов, поскольку число «семь» было очень важным для древнего мира: семь нот, семь дней недели и т. п.

Спектр

Человеческий глаз воспринимает свет разной длины волны как впечатление различных цветов (рис. 1).

  • фиолетовый от 380 нм до 436 нм;
  • синий от 436 нм до 495 нм;
  • зеленый от 495 нм до 566 нм;
  • желтый, от 566 нм до 589 нм;
  • оранжевый 589 нм — 627 нм;
  • красный от 627 нм до 780 нм.

Спектр видимого света
Рис. 1. Спектр видимого света

Белый свет — это смесь всех цветов. Вы можете увидеть это, разложив свет в призме или посмотрев на радугу, которая возникает в результате дисперсии белого света на капельках воды в облаках.

Как получается, что мы видим мир в красках? Когда белый свет падает на тело, часть излучения поглощается, а часть отражается от его поверхности. Если тело поглощает свет от красного до зеленого и отражает синий и фиолетовый свет, то при рассмотрении в белом свете оно будет иметь оттенок синего или фиолетового, в зависимости от соотношения этих цветов в отраженном свете.

Видимый свет лишь слегка поглощается как атмосферой Земли, так и водой. Эта особенность чрезвычайно важна для жизни на Земле. Ему мы обязаны не только способностью видеть окружающее нас пространство, но и самим происхождением жизни на Земле. Жизнь не могла бы существовать без фотосинтеза, для которого необходим свет.

Свет имеет волновую природу, т.е. он подвержен различным физическим явлениям, характерным для волн, таким как дифракция или интерференция. Но в то же время он имеет корпускулярную природу — он состоит из фотонов, элементарных частиц с нулевым зарядом и массой покоя. Отсутствие массы покоя означает, что фотон не существует в состоянии покоя, он может двигаться только со скоростью света.

Энергия фотона прямо пропорциональна частоте волны и обратно пропорциональна длине электромагнитной волны:

E = h * ν = ( h * c ) / λ, где

где ν — частота волны, λ — длина волны, c = 3 * 108 — скорость света, h — постоянная Планка, h = 6,63*10-34 Дж*с = 4,14*10-15 эВ·c.

Смешивая вместе красные, синие и зеленые лучи света, можно получить любой цвет. Смешивание света равной интенсивности этих трех цветов дает белый свет (рис. 2). Изменяя пропорцию каждого цвета, можно получить другой цвет. Явление создания новых цветов путем наложения лучей видимого света разной длины называется аддитивным синтезом.

Будет интересно➡  Виды и типы цоколей ламп

Аддитивный синтез цвета
Рис. 2. Аддитивный синтез цвета

Чувствительность человеческого глаза к цветам обусловлена наличием в сетчатке трех типов фоторецепторов, называемых колбочками. Каждый тип колбочек чувствителен к разным цветам света: красному, зеленому и синему. В зависимости от соотношения этих трех цветов, регистрируемых колбочками, в мозге формируется впечатление о полученном цвете.

Центр области видимого света находится на длине волны около 555 нм, что соответствует желто-зеленому цвету. К свету этого цвета чувствительность глаза наиболее высока. Кривая чувствительности глаза стремится к нулю как на длинноволновой, так и на коротковолновой стороне (рис. 3).

Чувствительность глаз к свету разной длины волны
Рис. 3. Чувствительность глаз к свету разной длины волны

Все современные мониторы, телевизоры, цифровые камеры и подобные устройства работают по принципу аддитивного смешивания цветов. Комбинируя цвета RGB (красный, зеленый, синий) в любом количестве комбинаций, можно получить широкий спектр производных цветов на экране.

Источники.

Источником видимого света может быть пламя свечи, газ в люминесцентной лампе или зажженная лампочка, а также отражающий солнечный свет объект.

Понятия видимый и невидимый свет

Светом называют электромагнитное излучение, лежащее в оптическом диапазоне, который расположен на участке частот от 150 гигагерц (ГГц) до 100 петагерц (ПГц). Это соответствует длинам волн от 2 мм до 4 нм.

Но человеческий глаз способен воспринимать только часть этого участка с частотами, лежащими в пределах 400-800 ТГц (длины волн 760 – 380 нм). Этот участок спектра и называется видимым светом.

Границы видимого света довольно условны. Они определяются индивидуально для каждого человека.

Некоторые животные и насекомые могут не видеть некоторые участки видимого цвета, различаемые человеком. Так, глаз кошки малочувствителен к цветам длинноволнового участка, содержащего красные и желтые оттенки. Но зато они могут видеть свечение в начале ультрафиолетового сектора, недоступное людям.

На самом деле свет занимает небольшой участок в общем спектре электромагнитных колебаний, но он обладает совершенно определенными свойствами. Это позволило выделить науку о свете и его свойствах в отдельную область физики – оптику.

Что такое свет: состав, свойства, цветовой спектр видимого излучения
Расположение участка видимого света на шкале частот и длин волн электромагнитных колебаний.

Говорить о том, что у света есть первооткрыватель, некорректно. Изучение оптических явлений началось еще в Античной Греции (по крайней мере, первые упоминания об опытах дошли с тех времен). Из относительно современных ученых, заложивших основы нынешней оптики, следует упомянуть Исаака Ньютона. Он изложил результаты своих исследований в трактате «Оптика, или трактат об отражениях, преломлениях, изгибаниях и цветах света». Английский ученый впервые ввел понятие спектра по отношению к цветовой гамме.

Количество основных цветов по Ньютону — семь – совпадает с количеством музыкальных нот. Английский ученый был убежден в связи между цветами, музыкой и физическими объектами.

Что такое свет: состав, свойства, цветовой спектр видимого излучения
Исаак Ньютон

Ньютон показал, что многие оттенки можно получить, смешивая различные цвета между собой. Считается также, что он выдвинул гипотезу о корпускулярной природе светового излучения. С другой стороны, на первом этапе научных изысканий сэр Исаак Ньютон был приверженцем эмиссионной теории света, однако через определенный период он склонился к мысли, что свет представляет собой волны.

Что такое свет: состав, свойства, цветовой спектр видимого излучения
Цветовой круг Ньютона

Несколько позже свой труд «Теория цветов» издал немецкий ученый и поэт Иоганн Гете. Эта монография явилась серьезным вкладом в развитие оптики, как науки. Отличие подхода Гете от опытов Ньютона в том, что он изначально не смешивал цвета, а разлагал их посредством стеклянных призм.

Что такое свет: состав, свойства, цветовой спектр видимого излучения
Цветовое колесо Гете

Как ученые используют свет

Некоторые физики пытаются использовать свет для создания шифрованных каналов связи, для денежных переводов, к примеру. Для них имеет смысл думать о свете как о частицах. Виной всему странная природа квантовой физики. Две фундаментальные частицы, как пара фотонов, могут быть «запутаны». Это значит, что они будут иметь общие свойства вне зависимости от того, как далеки будут друг от друга, поэтому их можно использовать для передачи информации между двумя точками на Земле.

Еще одна особенность этой запутанности в том, что квантовое состояние фотонов изменяется, когда их считывают. Это значит, что если кто-то попытается подслушать зашифрованный канал, в теории, он сразу выдаст свое присутствие.

Другие, как Гулильмакис, используют свет в электронике. Им полезней представлять свет в виде серии волн, которые можно приручить и контролировать. Современные устройства под названием «синтесайзеры светового поля» могут сводить световые волны в идеальной синхронности друг с дружкой. В результате они создают световые импульсы, которые более интенсивные, кратковременные и направленные, чем свет обычной лампы.

За последние 15 лет эти устройства научились использовать для приручения света с чрезвычайной степенью. В 2004 году Гулильмакис и его коллеги научились производить невероятно короткие импульсы рентгеновского излучения. Каждый импульс длился всего 250 аттосекунд, или 250 квинтиллионных секунды.

Используя эти крошечные импульсы как вспышку фотоаппарата, они смогли сделать снимки отдельных волн видимого света, которые колеблются намного медленнее. Они буквально сделали снимки движущегося света.

«Еще со времен Максвелла мы знали, что свет — это осциллирующее электромагнитное поле, но никто даже и подумать не мог, что мы можем сделать снимки осциллирующего света», — говорит Гулильмакис.

Наблюдение за этими отдельными волнами света стало первым шагом по направлению к управлению и изменению света, говорит он, подобно тому, как мы изменяем радиоволны для переноса радио- и телевизионных сигналов.

Будет интересно➡  Как установить и подключить зеркало с подсветкой

Сто лет назад фотоэлектрический эффект показал, что видимый свет влияет на электроны в металле. Гулильмакис говорит, что должна быть возможность точно контролировать эти электроны, используя волны видимого света, измененные таким образом, чтобы взаимодействовать с металлом четко определенным образом. «Мы можем управлять светом и с его помощью управлять материей», — говорит он.

Как можно понять, свет это очень сложное явление

Это может произвести революцию в электронике, привести к новому поколению оптических компьютеров, которые будут меньше и быстрее наших. «Мы сможем двигать электронами как заблагорассудится, создавая электрические токи внутри твердых веществ с помощью света, а не как в обычной электронике».

Впрочем, ничего нового. Жизнь использовала свет еще с тех пор, когда первые примитивные организмы развили светочувствительные ткани. Глаза людей улавливают фотоны видимого света, мы используем их для изучения мира вокруг. Современные технологии еще дальше уводят эту идею. В 2014 году Нобелевская премия по химии была присуждена исследователям, которые построили настолько мощный световой микроскоп, что он считался физически невозможным. Оказалось, что если постараться, свет может показать нам вещи, которые мы думали никогда не увидим.

Длины волн видимого света

Что такое видимый свет?

Некоторые люди могут видеть дальше в ультрафиолетовом и инфракрасном диапазонах, чем другие, поэтому границы” видимого света “красного и фиолетового нечетко определены. Кроме того, хорошее видение одного конца спектра не обязательно означает, что вы хорошо видите другой конец спектра. Вы можете проверить себя с помощью призмы и листа бумаги. Посветите ярким белым светом через призму, чтобы на бумаге появилась радуга. Отметьте края и сравните размер своей радуги с другими.

Длины волн видимого света:

  • Фиолетовый : 380–450 нм (частота 688–789 ТГц)
  • Синий : 450–495 нм
  • Зеленый : 495–570 нм
  • Желтый : 570–590 нм
  • Оранжевый : 590–620 нм
  • Красный : 620–750 нм (частота 400–484 ТГц)

Фиолетовый свет имеет самую короткую длину волны, что означает, что у него самая высокая частота и энергия. Красный цвет имеет самую длинную длину волны, самую короткую частоту и самую низкую энергию.

Особый случай индиго

Что такое видимый свет?

Цвет индиго не имеет длины волны. Если вам нужно число, это около 445 нанометров, но оно не появляется на большинстве спектров. Для этого есть причина. Английский математик Исаак Ньютон (1643–1727) ввел слово спектр (латинское слово «внешний вид») в своей книге «Оптика» 1671 года. Он разделил спектр на семь частей – красный, оранжевый, желтый, зеленый, синий, индиго и фиолетовый – в соответствии с греческими софистами, чтобы связать цвета с днями недели, музыкальными нотами и известными объектами солнечного света. система.

Итак, спектр сначала был описан семью цветами, но большинство людей, даже если они хорошо видят цвет, не могут отличить индиго от синего или фиолетового. В современном спектре обычно отсутствует индиго. Фактически, есть свидетельства того, что разделение спектра Ньютоном даже не соответствует цветам, которые мы определяем длинами волн. Например, индиго Ньютона – это современный синий, а его синий соответствует цвету, который мы называем голубым.. Ваш синий такой же, как мой синий? Возможно, но он может быть не таким, как у Ньютона.

Видимый свет и земная атмосфера

Видимый свет пробивается сквозь оптическое окно. Это «место» в электромагнитном спектре, пропускающее волны без сопротивления. В качестве примера можно вспомнить, что воздушный слой рассеивает голубой лучше красного, поэтому небеса кажутся нам синими.

Оптическое окно также именуют видимым, потому что оно перекрывает спектр, доступный человеку. Это не случайно. Наши предки развили видение, способное использовать огромное многообразие длин волн.

Благодаря наличию оптического окна мы можем наслаждаться относительно мягкими температурными условиями. Функция солнечной яркости достигает максимума в видимом диапазоне, который перемещается, не завися от оптического окна. Именно поэтому поверхность нагревается.

Почему рентгеновские лучи это не свет

Любопытно, однако, что если длины волн становятся еще короче или длиннее, мы перестаем называть их «светом». За пределами ультрафиолетового, электромагнитные волны могут быть короче 100 нм. Это царство рентгеновских и гамма-лучей. Вы когда-нибудь слышали, чтобы рентгеновские лучи называли формой света?

Ученый никогда не назовет рентгеновские лучи светом

«Ученый не скажет «я просвечиваю объект рентгеновским светом». Он скажет «я использую рентгеновские лучи», — говорит Гулильмакис.

Между тем, за пределами инфракрасных и электромагнитных длин волны вытягиваются до 1 см и даже до тысяч километров. Такие электромагнитные волны получили названия микроволн или радиоволн. Кому-то может показаться странным воспринимать радиоволны как свет.

«Нет особой физической разницы между радиоволнами и видимым светом с точки зрения физики, — говорит Гулильмакис. — Вы будете описывать их одними и теми же уравнениями и математикой». Только наше повседневное восприятие различает их.

Таким образом, мы получаем другое определение света. Это очень узкий диапазон электромагнитного излучения, которое могут видеть наши глаза. Другими словами, свет — это субъективный ярлык, который мы используем только вследствие ограниченности наших органов чувств.

Предыдущая
ОсвещениеЦветовая температура лампочки
Следующая
ОсвещениеКак заменить точечный светильник на потолке
Понравилась статья? Поделиться с друзьями:
Electroinfo.net  онлайн журнал
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять